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Outline of course

Buts: présenter des thématiques de recherche méthodologiques actuelles,
et faciliter la compréhension de la littérature

Rappels de génétique (FR)

Likelihood inference under simple models; the coalescent (FR)
Molecular markers (RL)

TD Coalescence (RL)

Moment methods (FR)

Algorithms for likelihood inference under neutral models (RL)

Simulation-based inference: ABC (Jean-Michel Marin)

Analyse d’articles

FR & RL Inférence en génétique des populations M2 Biostatistiques 2015–2016 2 / 30



Why is (statistical) regression called regression?
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Today’s outline

Population genetics = analysis of the processes controlling genetic
polymorphisms in populations

Developed to understand evolution

From Mendel’s rules to population processes

Population genetics
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A familiar example: our mosquitoes

In the ’60s: development of tourism.
Insecticide treatments 1969- First resistance in 1972
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FR & RL Inférence en génétique des populations M2 Biostatistiques 2015–2016 5 / 30



A familiar example: our mosquitoes

In the ’60s: development of tourism.
Insecticide treatments 1969- First resistance in 1972

October 1996
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How does natural selection work?

artificial breeding: we know that selection works even if we do not
know the mechanisms of heredity

Variation
Differential reproductive success (fitness)
Heredity

Was not compatible with some early ideas about heredity
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Heredity matters

The misconception of
blending inheritance

R R

R R R

R R R

Assuming Xdescendant = X̄parents

How does the variance of trait evolve?

Variance of trait quickly vanishes
Var(X )among descendants =
Var[(Xmother + Xfather)/2]among descendants

⇒ No variation to select from!

But of course, Xdescendant 6= X̄parents

Elaborations, e.g. regression on ancestral
values (Galton)
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The misconception of
blending inheritance

R R

R R R

R R R

Assuming Xdescendant = X̄parents

Variance of trait quickly vanishes
Var(X )among descendants =
Var[(Xmother + Xfather)/2]among descendants

⇒ No variation to select from!

But of course, Xdescendant 6= X̄parents

Elaborations, e.g. regression on ancestral
values (Galton)

Xt+1 = 2X̄t
3 + 4X̄t−1

9 + 8X̄t−2

27 + · · ·

FR & RL Inférence en génétique des populations M2 Biostatistiques 2015–2016 7 / 30



Heredity matters

The misconception of
blending inheritance

R R

R R R

R R R

Assuming Xdescendant = X̄parents

Variance of trait quickly vanishes
Var(X )among descendants =
Var[(Xmother + Xfather)/2]among descendants

⇒ No variation to select from!

But of course, Xdescendant 6= X̄parents

Elaborations, e.g. regression on ancestral
values (Galton)

Xt+1 = X̄t
2 + X̄t−1

4 + X̄t−2

8 + · · ·
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Mendelian segregation

R R

R R R

R R R R

aa bb

ab ab ab

aa ab ab bb

Allows continued selection of
initial variation over many
generations
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Two developments

Concepts of particulate inheritance and
its physical basis

chromosomes

� � � �

� � � � � �

� � � � � � � �
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Meiosis
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Meiosis
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Two developments

Concept of particulate inheritance and
its physical basis
chromosomes
Linkage maps

aa bb

ab ab ab

aa ab ab bb

� � � �

••••� � . . . � �
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Two developments

Concept of particulate inheritance and
its physical basis
chromosomes
Linkage maps
Quantitative theory of evolution

aa bb

ab ab ab

aa ab ab bb

� � � �

••••� � . . . � �

� � � � � � � �
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The language of Mendelian and population genetics

At an (autosomal) locus you have two genes (one from each parent) but
maybe a single allele.

Phenotype1 := anything (R)

Genotype1 := set of transmitted determinants of the phenotype, each
of which is transmitted independently of the environment.
(aa/ab/bb)

Gene1 := an element of the genotype.

May or may not be DNA
May or may not code for a protein

Allele1 := a form of the gene (a as opposed to b)

Locus := position of a gene on a genetic (or physical) map
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1After Johannsen, 1911
FR & RL Inférence en génétique des populations M2 Biostatistiques 2015–2016 12 / 30



The language of Mendelian and population genetics

At an (autosomal) locus you have two genes (one from each parent) but
maybe a single allele.

Phenotype1 := anything (R)

Genotype1 := set of transmitted determinants of the phenotype, each
of which is transmitted independently of the environment.
(aa/ab/bb)

Gene1 := an element of the genotype.

May or may not be DNA
May or may not code for a protein

Allele1 := a form of the gene (a as opposed to b)

Locus := position of a gene on a genetic (or physical) map
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The language of Mendelian and population genetics

At an (autosomal) locus you have two gene copies (one from each parent)
but maybe a single allele.

Phenotype1 := anything (R)

Genotype1 := set of transmitted determinants of the phenotype, each
of which is transmitted independently of the environment.
(aa/ab/bb)

Gene1 := an element of the genotype.

May or may not be DNA
May or may not code for a protein

Allele1 := a form of the gene (a as opposed to b)

Locus := position of a gene on a genetic (or physical) map
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From crosses to populations
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Regression coefficient=heritability;
quantifies response to selection
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Parent-offspring regressions under Mendelian inheritance

One locus with semi-dominance, i.e.

R1 R0

R R R

R R R R

Further assume pb = 0.4
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Parent-offspring regressions under Mendelian inheritance

One locus with dominance,
pb = 0.4
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Parent-offspring regressions under Mendelian inheritance

One locus with dominance,
pb = 0.4
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One locus with dominance,
pb = 0.4

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mid−parent phenotype

of
fs

pr
in

g 
ph

en
ot

yp
e

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mid−parent phenotype

of
fs

pr
in

g 
ph

en
ot

yp
e

●

100 loci, additive effect among loci,
dominance within loci, all pb = 0.4

0.75 0.80 0.85 0.90

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

mid−parent phenotype

of
fs

pr
in

g 
ph

en
ot

yp
e

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
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Parent-offspring regressions under Mendelian inheritance

One locus with dominance,
pb = 0.4
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Parent-offspring regressions under Mendelian inheritance

Many complications ignored in previous examples: environmental effects,
non-additive effects of different loci (epistasis)

FR & RL Inférence en génétique des populations M2 Biostatistiques 2015–2016 16 / 30



Changes in allele frequencies: classification of causes

Analysis of changes in genotype frequencies in terms of

Selection

Mutation

Immigration (“gene flow”)

Drift

Additional effects of the mating system on the diploid genotype frequencies
Additional effects of recombination on multilocus genotype frequencies
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When nothing happens: Hardy-Weinberg (HW) equilibrium

Initially addressed an early misconception about the transmission of
dominant characters:

R R

R R R

R R R R

aa bb

ab ab ab

aa ab ab bb

HW equilibrium: allele frequencies do not change over generations (in the
absence of selection, mutation and drift)
Random mating (panmixia) ⇒ HW genotype frequencies p2 : 2pq : q2

(using traditional notation p for the frequency of an allele in a population,
and q := 1− p)
Genotype frequencies also constant over generations
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Non-random mating

E.g. partial selfing with probability s

P(ab)′ = (1− s)2pq + sP(ab)/2

Still equilibrium: allele frequencies do not change over generations (in the
absence of selection and drift)
⇒ Asymptotic equilibrium,

P(ab) = 2pq
1− s

1− s/2
= 2pq(1− FIS) for FIS =

s

2− s
.

Genotype frequencies p2 + pqFIS : 2pq(1− FIS) : q2 + pqFIS
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Mutation

Example: insecticide resistance
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Mutation

Anything that changes the allelic state: single nucleotide, deletions,
insertions, chromosomal inversions and translocations....
Rates of point mutation per gene copy per generation:

After Drake et al. (1998) Genetics
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Selection

Selection: causal link between parent i ’s alleles and their reproductive
success.

General:

E[p′a] =
∑

parents i

P(parent is i)1a(i) =
1

N

∑
NP(parent is i)1a(i)

NP(parent is i) is the expected number of descendants from parent i .
It may be taken as a definition of the fitness wi of individual i , such that

E[p′a]− pa = Cov[wi , 1a(i)].
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2
(2−#A) +

se
2
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−ca
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−ce
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Some traditional or memorable formulas

For deterministic models, in terms of allelic fitnesses wa and wb

(
pa
pb

)′
=

wa

wb

pa
pb

p′a − pa =(wa − wb)pa(1− pa)

=βw ,1a Var(1a) = Cov[wi , 1a(i))]

Fitness is often more vaguely defined, up to a constant w̄ , such that

p′a − pa =
(wa − wb)

w̄
pa(1− pa)

E.g., “fitness” defined as survival in previous example.
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Migration

Example: insecticide resistance
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Components of fitness can be estimated

Example: insecticide resistance
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Genetic drift

107 lines founded each by 16
heterozygous flies

Buri (1956)

Wright-Fisher model
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Wright-Fisher model

Assumptions
N parents each producing a Poisson-distributed number (with mean � N)
of juveniles.
N descendants are drawn from all juveniles.
Elementary questions
Distribution of number of drawn offspring of each parent?
Two alleles a and b: Distribution of number of drawn offspring of type a?
Simplest version: no mutation nor selection
Markov chain on na with transition probabilities P(n′a|na):

(
N

n′a

)
(na/N)n

′
a(1− na/N)N−n

′
a =

(
N

n′a

)
pn′a
a (1− pa)N−n

′
a

(Symmetric) mutation: (
N

n′a

)
℘n′a(1− ℘)N−n

′
a

with ℘ = pa + µ(1− 2pa)
E[pa(1− pa)] after t generations ?
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Complex patterns can result from interactions between the
different processes

Frequency of a mutant controlling expression of lactase in human
populations

Need for formal model-based inferences
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Sexual life cycles

“Diploid” organism “Haploid” organism
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Sexual life cycles

“Diploid” organism “Haploid” organism

A single haplo-diploid cycle with a unique transmission rule
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