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Wright-Fisher model of genetic drift

N haploid parents => gene copies ( ! N diploid individuals = 2N
gene copies)

Two alleles A,a with counts X ,N − X

Each parent produces a large (ideally infinite) number of juveniles

Regulation: all juveniles compete for N breeding positions in the next
generation

X (t + 1) ∼ Binomial [N, π = x(t)/N]

Mutation:

a
u
�
v
A

E(P ′|P) = (1− v)P(t) + u(N − P(t))

X (t + 1) ∼ Binomial
[
N, π = E(P ′|P)]

]
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Moran model of genetic drift

N haploid parents

Two alleles A,a with counts X ,N − X

Each parent produces a large (ideally infinite) number of juveniles

All juveniles compete for 1 breeding position freed by one parent

Different variances of change in allele frequency over one “event” (check).
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Sampling distribution by forward approach

How to determine the allele frequency distribution f (p)?

Markov chain ⇒ standard theory applies; but the transition matrix is
hard to manipulate

Change model to make it more tractable? Moran model

Diffusion approximation
• The forward Kolmogorov equation

∂f (p, t)

∂t
= −∂a(p)f (p, t)

∂p
+
∂2b(p)f (p, t)

2∂p2

where a(p) and b(p) are 1st and 2nd moments of change in p per
unit time.
• The approximation of the Wright-Fisher process by a diffusion
process
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Intuitive explanation of the forward equation

f (p): Probability density of allele frequency p
h: small variation of p
δ: small variation of time t

f (p, t + δ)h = f (p, t)h +
hδ

2
[v(p + h, t)f (p + h, t)− v(p, t)f (p, t)]

+
hδ

2
[v(p − h, t)f (p − h, t)− v(p, t)f (p, t)]

+ hδ[m(p − h, t)f (p − h, t)−m(p, t)f (p, t)].

f (p, t + δ)− f (p, t)

δ
=

hm(p − h, t)f (p − h, t)− hm(p, t)f (p, t)

h

+
1

2

h2v(p+h,t)f (p+h,t)−h2v(p,t)f (p,t)
h

− h2v(p,t)f (p,t)−h2v(p−h,t)f (p−h,t)
h

h

so that when h→ 0 and δ → 0

∂f (p, t)

∂t
= −∂M(p, t)f (p, t)

∂p
+

1

2

∂2V (p, t)f (p, t)

∂p2

for M(p, t) := hm(p, t) and V (p, t) := h2v(p, t).
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Barely more rigorous sketch of proof...

... with better definitions of M and V .

(Chapman-Kolmogorov) f (p, t + δ) =
∫
ξ f (p − ξ, t)g(p − ξ, ξ; t, δ)dξ

where g is transition density over time interval δ.

Take limit of

f (p, t + δ)− f (p, t)

δ
= −

∂f
∫
ξ ξg dξ

δ∂p
+
∂f
∫
ξ ξ

2g dξ

2δ∂p
+ . . .

as δ → 0:

∂f (p, t)

∂t
= −∂M(p, t)f (p, t)

∂p
+

1

2

∂2V (p, t)f (p, t)

∂p2
+ . . .

for M(p, t) := limδ→0

∫
ξ ξg dξ/δ and limδ→0 V (p, t) :=

∫
ξ ξ

2g dξ/δ.

Assume that limδ→0

∫
ξ ξ

4g dξ/δ = 0. Then all ‘. . .’ can be neglected
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Allele frequency distribution by diffusion approach

WF, Moran: discrete processes on allele frequency. We wish to
approximate the distribution of allele frequency by a probability density
f (p, τ) obtained by solution of the forward Kolmogorov equation

∂f (p, τ)

∂τ
= −∂a(p)f (p, τ)

∂p
+
∂2b(p)f (p, τ)

2∂p2

XN([t/cN ])/N → diffusion process Y (τ) characterized by a(p) and b(p) in
one unit of cN generations.
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Let X (t) be the number of copies of a given allele at generation t,
X (t)/N is allele frequency;
X ([Nτ ])/N is allele frequency at generation Nτ (where [x ] denotes the
greatest integer less than x);
X ([N(τ + 1/N)])/N is allele frequency at generation Nτ + 1 or at time
(τ + 1/N) for τ in units of N generations.
{X ([Nτ ] + 1)− X ([Nτ ])} /N is change in allele frequency over one
generation (1/N units of τ).

XN([t/cN ])/N → diffusion process Y (τ) characterized by a(p) and b(p) in
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{X ([Nτ ] + 1)− X ([Nτ ])} /N is change in allele frequency over one
generation (1/N units of τ).
where for the Wright-Fisher model (the drift coefficient) a(p) represents
expected change in one unit of τ (N generations)

a(p) = lim
N→∞

N E

[
X ([Nτ ] + 1)− X ([Nτ ])

N

∣∣∣∣ X ([Nτ ])

N
= p

]
and (the diffusion coefficient) b(p) represents the second moment

b(p) = lim
N→∞

N E

[(
X ([Nτ ] + 1)− X ([Nτ ])

N

)2
∣∣∣∣∣ X ([Nτ ])

N
= p

]
.

Here b(p) = p(1− p) and a(p) = N(−vp + u(1− p))
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{X ([Nτ ] + 1)− X ([Nτ ])} /N is change in allele frequency over one
generation (1/N units of τ).
and for the Moran model?
Var(∆p) = 2pq/N2 over one individual replacement; or “diffusion rate” is
2pq/N over one “generation” of N replacements;
then equivalent to WF model with population size N/2;
b(p) = p(1− p) and a(p) = N/2(−vp + u(1− p)) over N/2“generations”
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Stationary distribution

Stationarity:

0 =
∂f (p, t)

∂t
= −∂a(p)f (p, t)

∂p
+
∂2b(p)f (p, t)

2∂p2

f (p) ∝
exp

(
2
∫ p

a(x)/b(x)dx
)

b(p)

Frequency
P ∼ Const p2Nu−1(1− p)2Nv−1 =Beta(α = 2Nu, β = 2Nv)
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+
∂2b(p)f (p, t)

2∂p2

f (p) ∝
exp

(
2
∫ p

a(x)/b(x) dx
)

b(p)

(this is heuristic, in particular ignoring complications at the
boundaries p = 0, p = 1).

Frequency
P ∼ Const p2Nu−1(1− p)2Nv−1 =Beta(α = 2Nu, β = 2Nv)
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Sampling distribution

Sample of size n

Psample ∼
∫

Const x2Nu−1(1− x)2Nv−1Binomial [n, π = x ] dx

=Beta-Binomial distribution

Few models have such an explicit solution.
In the sequel we are mostly concerned with cases where no
distribution of P is known from which the distribution of Psample

could be derived in this way.
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Development of the backward approach

Conventional genealogical tree vs ancestral gene tree
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Infinite allele model

Each mutation produces an allele not pre-existing in the population

No stationary distribution of allele frequency!

Specific diffusion tools, not considered here, were developed
(frequency spectrum: probability that an existing allele is in some
frequency range p, p + dp)

Application of coalescent arguments;

•• must come from •, not from ••
What are the possible ancestral types of •••?
A sample of n genes is described by the numbers aj of alleles found in j
copies
a = (a1 = 1, a2 = 1, a3 = 0) describes ••• (that is, •••)
Let Pn(a) be the stationary proba. of sample a given sample size n;
what do P2(2, 0) and P2(0, 1) represent?
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Constructing recurrences on samples

Pn(a) =
∑

tree∈T (n)

P(tree)P(a|tree, n) =
∑

tree∈T (n)

P(tree)π(a|tree)

where tree is the genealogical history of the sample (but not mutation
history); and π denotes probabilities in the process of adding allele types to
a given tree. Over a small time interval δ:

Pn(a) =
∑
nδ

P(nδ|n)
∑
aδ

∑
treeδ∈T (nδ)

P(treeδ)π(aδ|treeδ)π(a|treeδ, n, aδ)

where aδ is the state of the ancestral sample after adding mutation to
treeδ, a random tree of a sample of size nδ from the MRCA up to time δ.

Pn(a) =
∑
nδ

∑
aδ

P(nδ|n)Pnδ(aδ)π(a|n, aδ)
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Constructing recurrences on samples

This includes the case aδ = a (no event occurred) on the RHS, leading to

Pn(a)[1− P(no event)] =
∑
nδ

∑
aδ 6=a

P(nδ|n)Pnδ(aδ)π(a|n, aδ).

Then P(nδ|n)/[1− P(no event)] =: p(a) denotes the probability that the
first event in the ancestry is a coalescence (nδ = n − 1), or a mutation
(nδ = n). This gives a new recurrence over the time step of such a first
event:

Pn(a) =
∑
nδ

∑
aδ 6=a

p(a)Pnδ(aδ)π(a|n, aδ).
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Constructing recurrences on samples

First consider the rates of competing events affecting ancestry of n
lineages: mutation at rate nµ, coalescence at rate n(n − 1)/(2N).
The first event is a mutation with probability ...?

µ/[µ+ (n − 1)/2N] = θ/(θ + n − 1) for θ = 2Nµ.
Let us consider the probability P3(a1 = 1, a2 = 1, a3 = 0) i.e. for
sample •••

P3(1, 1, 0) =
θ

2 + θ

P2(0, 1)

+
2

2 + θ

P2(2, 0)

••• •••

••

••

•••
P3(1, 1, 0)

P2(0, 1)

P2(2, 0)
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Sampling distribution in this model

General recursion at stationarity [with ej = (0, · · · , 0, 1jth, 0, · · · , 0)]:

Pn(a) =
θ

n − 1 + θ
Pn−1(a−e1)+

n − 1

n − 1 + θ

∑
aj+1>0

j(aj + 1)

n − 1
Pn−1(a+ej−ej+1)

where when a coalescence occurs, the descendant sample has
(· · · , aj , aj+1, · · · ) hence ancestral one has (· · · , aj + 1, aj+1 − 1, · · · ) and
the probability that one of the aj + 1 alleles with j gene copies is chosen to
duplicate is j(aj + 1)/(n − 1).
This recursion (with P1(1) = 1) has a known solution: Ewens’ (1972)
sampling formula:

Pn(a) =
n!

θ(n)

n∏
j=1

(
θ

j

)aj 1

aj !

where θ(n) = θ(θ + 1) · · · (θ + n − 1).
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Distribution of number of alleles

Recursion for number of alleles

P(Kn = k) =
n − 1

n − 1 + θ
P(Kn−1 = k) +

θ

n − 1 + θ
P(Kn−1 = k − 1).

In other words, the probability that the nth gene is of a new type not
represented in the first n − 1 genes drawn is θ/(n − 1 + θ).

This recurrence has solution

P(Kn = k) =
θk

θ(n)
S(n, k) =

S(n, k)θk∑n
k=1 S(n, k)θk

where S(n, k) is the Stirling number of the first kind.
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Stirling numbers of the first kind?

S(n, k) is the coefficient of θk in the expansion
θ(n) = θ(θ + 1) · · · (θ + n − 1) =

∑
k S(n, k)θk

Thus, one can write

1 =

∑
k S(n, k)θk

θ(n)
=

n∏
j=1

(
θ

θ + j − 1
+

j − 1

θ + j − 1

)

and interpret the coefficient S(n, k) as the sum of all terms that result
from taking k times in the product a term of the form θ/(θ + j − 1) and
n − k times a term of the form (j − 1)/(θ + j − 1).

Then, according to the previous fact that θ/(k − 1 + θ) is the probability
that an additional gene is of a new type not represented in the previous k
genes, S(n, k) is the probability that there are k alleles in the sample.
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The likelihood of θ is a function of the number of alleles

Pn(a) =
n!

θ(n)

n∏
j=1

(
θ

j

)aj 1

aj !

and

P(Kn = k) =
θk

θ(n)
S(n, k)

imply that

Pn(a|Kn = k) =
n!

S(n, k)

n∏
j=1

1

jajaj !

is independent of θ.

K is sufficient for θ and Pn(a|Kn = k) may serve to construct a
goodness-of-fit test for the WF, IAM model.
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Inference in this model

We reached a sampling distribution by a coalescent argument, not
using “population” distributions

Standard likelihood methods for point estimation and confidence
intervals can be applied
MLE of θ asymptotically Gaussian
Its variance is O[1/ log(n)], not O(n)

But we are unable to do anything similar as soon as we change the
assumptions.

Two developments:

coalescent arguments used in different ways (combined with stochastic
algorithms)
Recursions for simpler properties of samples, moment methods, ABC
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Kingman’s (1981) n-coalescent

Motivation Extend genealogical arguments, where “for a large class of
demographic models, characterized by selective neutrality and constrained
population size, the stochastic structure of the genealogy does not depend
on the detail of the reproductive mechanism.” (Kingman)
Large class = constant population size, and no simultaneous coalescent
events; i.e.
1) continuous-time limit of WF model when N →∞ and time rescaled in
units of N generations.
2) More generally when family sizes are exchangeable (e.g. Moran model).

(...)
More formal definition
For a sample of n genes
• a Markov chain whose states are equivalence relations on {1, 2, ..., n};
• equivalence relations which contains the pair (i , j) if and only if the ith
and the jth individual of this sample have a common ancestor in the rth
generation;
• Let cN be the probability that two individuals, chosen randomly without
replacement from some generation, have a common ancestor one
generation backwards in time;
• Then, different processes (WF, Moran) in scaled time [t/cN ] converge in
distribution to the coalescent process as N →∞.
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