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This chapter reviews theoretical models and statistical methods for inference from genetic data
in subdivided populations. With few exceptions, these methods are based on neutral models of
genetic differentiation and have been mainly concerned with estimation of dispersal rates. However,
simulation-based methods allow to draw inferences under models involving additional demographic
processes such as changes in dispersal rates over time. The formulation and main results of
migration matrix, island, and isolation-by-distance models, are briefly described. The definition
and basic properties of F -statistics are reviewed, and moment methods for their estimation are
contrasted with likelihood methods. Then, the application of the different methodologies to simple
biological scenarios is reviewed. Their practical performance is discussed in light of comparisons
with demographic estimates, as well as of their robustness to different assumptions and of concepts
of separation of timescale.

28.1 INTRODUCTION

Since the advent of molecular markers in population genetics, there have been many
efforts to define methods of inference from the spatial genetic structure of populations.
This chapter can only review a small selection of them including, in particular, some
recent developments of simulation-based likelihood methods, and also of less sophisticated
methods in so far as they provide analytical insight and proven performance in realistic
conditions. With few exceptions, I will focus on allele frequency data; some methods for
other types of data are described in Chapter 29.

The perspective taken in this review is that studies of spatial population structure are
conducted in order to make inferences about parameters considered important for the
evolution of natural populations, for example, for the dynamics of adaptation. Thus,
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all such analyses should ultimately be based on models of evolution in subdivided
populations. This would lead to the identification of important parameters in such
processes and to the formulation of appropriate statistical models to estimate them
(assuming it is useful to estimate them in order to test the models). In this perspective,
the material reviewed below may seem imperfect not only because the statistical models
are approximate but also because the important evolutionary parameters are not always
clearly identified.

In all inferences, we will consider a total sample from a population structured by
restricted dispersal in a number of demes (a technical term used in the analysis of the
models) or subpopulations (a somewhat looser term). The population concept must be
carefully distinguished from another concept of ‘population’ often considered in statistics,
which actually refers to the probability distribution of samples under some model. In
general the value of a variable in the biological population is not the expected value of
this variable in this statistical ‘population’, in other words, this is not an expected value
in a theoretical model. In practice the word parameter is used for both, but here it will
be used only for the value in the theoretical model.

A statistical corollary is that by sampling only one locus, one may compute estimates
which will approach the value in the biological population, rather than the parameter
value, as more individuals are sampled. In other words, it will approach a value that will
depend on the realized genealogy in the biological population, and this will be a random
variable. The usual solution to this problem is to analyze several loci with different
genealogies, assumed independent. For a nonrecombining DNA, it may not be very useful
to sequence longer fragments: Since the whole DNA has the same genealogy, any estimate
will depend on the single realized random genealogy in the biological population sampled
(see Chapter 25).

28.2 NEUTRAL MODELS OF GEOGRAPHICAL VARIATION

The major models considered for statistical analysis describe the evolution of neutral
genetic polymorphisms; among models of selected markers, statistical analysis will be
considered only for clines.

28.2.1 Assumptions and Parameters

We consider a set of subpopulations each with Ni adults, and with dispersal rates mij from
subpopulation j to subpopulation i. These dispersal rates are defined as the probability
that an offspring had its parent in some subpopulation: Thus they are defined by looking
backward in time (backward dispersal rates), rather than by looking where offspring go
(forward dispersal rates). Forward and backward rates will differ, for example, when
individuals that disperse at longer distances have a higher probability of dying before
reproduction.

These models are known as migration-matrix models, with migration matrix (mij ).
Limit cases of these models when all deme sizes → ∞, all backward rates → 0, with
their products Nimij remaining finite, have been described as ‘structured coalescents’
(see e.g. Chapter 25). With many subpopulations, the number of parameters may be
large. However, some symmetric structure is usually assumed, as in the island and



INFERENCES FROM SPATIAL POPULATION GENETICS 3

isolation-by-distance models developed below. Further, the migration matrix, as well
as the subpopulation sizes Ni , are supposed to be invariant in time. These assumptions
allow for more detailed mathematical analysis. Simulation-based methods have allowed to
investigate more complex historical scenarios involving range expansions, interruptions
of gene flow, and so on. A relatively well-worked case is the isolation-with-migration
model (Nielsen and Wakeley, 2001), according to which an initially panmictic population
differentiates at some time T in the past into two subpopulations that will keep on
exchanging migrants at rate m until the time of sampling.

The island model (Wright, 1931a) with nd subpopulations is the simplest form of
migration-matrix model: For different subpopulations i, j , the dispersal rate is supposed
to be independent of i, j and may be written as mij = m/(nd − 1) where m is the total
dispersal rate; mii = 1 − m. The subpopulation sizes Ni = N are also supposed to be
independent of i. The infinite island model is the limit process as nd → ∞. This is the
most often considered model, because of its ease of analysis. However, it should be
noticed that most of the results of the infinite island model with Ni = N can easily be
extended to infinite island model with Ni different for different subpopulations and with
total dispersal rate into each subpopulation i being a function of i (see the discussion of
(28B.1)). Thus the main defining assumption of such island models is that immigrants
may come with equal probability from any of the other subpopulations.

Dispersal is often localized in space, so that immigrants preferentially come from close
populations. Two kinds of models that take this into account have been considered, one
for demes on a discrete lattice, and one for ‘continuous’ populations (e.g. Malécot, 1951;
1967). In a continuous population, the local density may fluctuate in space and time,
but there is no rigorous mathematical analysis of models incorporating such fluctuations.
In the lattice models, different demes are arranged on a regularly spaced lattice and the
dispersal rates are a function of the distance between demes. There is a fixed number of
adults, N , in every generation on each node of the lattice. Thus the position of individuals
is rigidly fixed and density does not fluctuate. The island model may be recovered as a
specific case.

In models of isolation by distance, the parameter σ 2 often appears (e.g. Malécot, 1967;
Nagylaki, 1976; Sawyer, 1977). This is an average squared distance between parent and
offspring. In two dimensions this is the average square of the projection of the two-
dimensional (vectorial) distance on an axis, also known as the axial distance (Figure 28.1).
This parameter is a measure of the speed at which two lineages descending from a
common ancestor depart from each other in space. The models as formulated above
may be generalized to include age- or stage-structure, and it is possible to generalize
some of the results for island and isolation by distance models given below in terms of
concept of effective dispersal rate and effective deme size or effective population density,
albeit through some approximations (Rousset, 1999a; 2004, Chapter 9). Then, effective
dispersal is the asymptotic rate of increase of the second moment of distance between
two independently dispersing gene lineages per unit time. The definition of population
density also needs to be generalized. First, it is actually not simply a density but a rate of
coalescence per surface and per unit time (Rousset, 1999a). In the basic models, it can be
computed as the expected number of coalescence events per generation among all pairs
of genes in the total population, divided by the total surface occupied by the population
(or habitat length in linear habitats). With age structure, it can be computed as a weighted
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Unsigned

Axial

Figure 28.1 σ 2 in two dimensions. One considers the two-dimensional dispersal distances (gray
arrows) between one parent (large central dot) and different offspring (or different parent–offspring
pairs). The projection of these vectors on two axes yield signed axial distances on each axis. In
terms of variance, σ 2 is the variance of the distribution of one such axial dispersal distance (bottom
right). This is not the variance of the unsigned dispersal distance (top right).

average of such among all pairs, these being weighted by reproductive value weights as
in the computation of the effective dispersal parameter.

28.3 METHODS OF INFERENCE

With few exceptions, explicit formulas for the likelihood of samples under the models
formulated above are not available. This section therefore focuses on moment methods for
which explicit analytical results are available, and on simulation methods for likelihood
inference.

28.3.1 F -statistics

Moment methods are based on the analysis of moments of order k of allele frequencies.
By far the most common of them (analysis of variance) consider only squares of
allele frequencies or equivalently frequencies of identical pairs of genes. This is the
basis for the theory of F -statistics in population genetics. Autocorrelation methods (e.g.
Sokal and Wartenberg, 1983; Epperson and Li, 1997) are constructed from pair-wise
comparisons of genes or genotypes, hence there should be essentially the same information
in such statistics as in the more standard moment methods. The relationship between
autocorrelation methods and some of the methods described below is discussed by Hardy
and Vekemans (1999).

28.3.1.1 Probabilities of Identity and F -statistics

To define genetic identity, we consider a pair of homologous genes and ask whether they
descend without mutation from their most recent common ancestor. If no mutation has
occurred since the coalescence of ancestral lineages, there is identity by descent (IBD).
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By identity in state (IIS) of a pair of genes we simply consider whether they have the
same sequence (if the alleles are distinguished by their sequence), the same length (if
the alleles are distinguished by the number of repeats of a microsatellite motif), the same
electrophoretic mobility, etc. In short, we only look at the allelic state of a gene. IBD
is a specific case of IIS for the infinite allele model, in which each allele produced by
mutation is considered different from preexisting alleles. The generic notation Q will be
used to denote expected values of IIS under any model.

If we consider a population structured in any way (age, geography, etc.), one may
always define Qw, the IIS probability within a class of genes (for example among
individuals of some age class, in the same subpopulation, etc.), and Qb, the IIS probability
between two different classes of individuals. In a generic way one may then define:

F ≡ Qw − Qb

1 − Qb
. (28.1)

Such quantities are known as F -statistics, but Qw, Qb, and F as defined above are
parameters. That is, Qw and Qb are expectations under independent replicates of the
stochastic process considered, and F is a function of these parameters. In other words, they
are functions of the parameters that define the model under study, such as subpopulation
sizes, mutation rates, migration rates, etc. If (say) deme size is by itself random, then F

and the Qs, being expectations in the process considered, are function of the parameters
of the distribution of deme size. In models of spatial genetic structure, Qw and Qb are
generally not ‘the value in the (biological) population’. Alternative definitions of F -
statistics, as values in biological populations, have been used in the literature (e.g. Nei,
1986; see Nagylaki, 1998 for further discussion), but analytical results below hold only
with the present parametric definitions.

Let Q2 be the IIS probability within subpopulations, and Q3 be the IIS probability
between subpopulations. The well-known FST parameter, originally considered by Wright,
is best defined as

FST ≡ Q2 − Q3

1 − Q3
. (28.2)

F -statistics may be described as correlations of genes within classes with respect to genes
between classes, that is as intraclass correlations (Cockerham and Weir, 1987).

28.3.1.2 Generic Methods for Estimation and Testing

The estimation of F -statistics is described at length in the literature (see e.g. Chapter 29,
Weir, 1996) so I will confine myself to emphasizing a few easily missed points.

A simple way to estimate parameters such as FST is to estimate each of the probabilities
of identity by the corresponding frequencies Q̂ of identical pairs of genes in the sample,
computed by simple counting. Thus FST may be estimated by

F̂ ≡ Q̂2 − Q̂3

1 − Q̂3

, (28.3)

where Q̂2 and Q̂3 are by definition the frequencies of identical pair of genes in the sample,
within and between deme, respectively. This simple approach to defining estimators may
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be easily adapted to a number of different settings, given that the parameters to be
estimated may be expressed as functions of probabilities of IIS. With balanced samples,
this approach directly yields Cockerham’s estimator of FST (Cockerham, 1973; Weir and
Cockerham, 1984). This estimator has been developed by analogy with the methods of
analysis of variance, and this analogy has proved difficult to understand. Appendix A
details the nature of the analogy and its relationship with 28.3.

It is easy to test for differentiation (nonzero FST) by the usual exact tests for contingency
tables either applied to gametic or genotypic data. These are standard statistical techniques
and their application to genetic data has been discussed elsewhere (e.g. Weir, 1996; Goudet
et al., 1996; Rousset and Raymond, 1997). A general set of techniques to draw confidence
intervals from the moment estimators are the bootstrap (e.g. Efron and Tibshirani, 1993)
and related techniques based on the resampling of loci. However, the simplest applications
of resampling techniques may be misleading. This may be apparent when they lead to
symmetric confidence intervals while the variance of the estimator is expected to be
sensitive to the parameter value, in which case more involved uses of the bootstrap
(DiCiccio and Efron, 1996) may be required.

28.3.1.3 Why F -statistics?

Wright was the first to note that such measures of genetic structure appear in some
theoretical models of adaptation, and his ideas remain among the most influential in
population genetics. He used them to quantify his ‘shifting balance’ model Wright (1931a;
1931b), which remains controversial today (Coyne et al., 1997). Nevertheless, F -statistics
are useful descriptors of selection in one-locus models (Rousset, 2004). Wright also used
them to estimate demographic parameters (Dobzhansky and Wright, 1941) and they have
become a standard tool to ‘estimate gene flow’ or for merely descriptive studies of genetic
population structure. Such studies are not always very convincing and may be questioned
on statistical grounds. Two major objections are (1) the connection between such measures
and the likelihood-based framework of statistics (e.g. Cox and Hinkley, 1974; Lehmann
and Casella, 1998) is not obvious; and (2) although FST bears a simple relationship with
the ‘number of migrants’ Nm in the infinite island model, it is not always clear how this
would extend to more general models of population structure. Also, with the definition
given above in terms of IIS, FST might be expected to depend on mutation processes
at the loci considered, and how this affects estimation of dispersal parameters is not
clear.

One of the main attractions of F -statistics may be their robustness to several factors.
In an infinite island model, the ancestral lineages of two genes sampled within the same
deme coalesce within this deme in a recent past with probability ≈ FST; with probability
≈ 1 − FST the lineages separate (looking backward) in different demes as a result of
immigration and will take a long time to coalesce. This implies that FST will depend
mostly on recent events. Before considering the implications in detail, we will see how
this argument can be generalized under isolation by distance.

We consider the probability cj,t that two genes coalesce at time t in the past. The j index
corresponds to the type of pair of genes considered (e.g. j = 2 or ‘w’ for genes within
demes and j = 3 or ‘b’ between demes as above). Identity by descent, here denoted Q̇,
has been defined as the probability that there has not been any mutation since the common
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Figure 28.2 This figure compares the distributions of coalescence times in demes two steps apart
(thick gray points) and within the same deme (thin black points). The inset shows the distributions
on a linear y scale. The distribution for genes within demes is decomposed in two areas, the light
gray one whose height is a constant times the height of the other distribution (hence it is shifted
on the log scale), and the remainder (dark gray) which is the excess probability of coalescence in
recent generations. The distribution were computed for 100 demes of N = 10 haploid individuals,
with dispersal rate m = 1/4.

ancestor. Thus

Q̇j =
∞∑
t=1

cj,t (1 − u)2t . (28.4)

(Malécot, 1975, (28.6); Slatkin, 1991). To understand the properties of F -statistics, we
compare the distributions of coalescence times cw,t and cb,t of the pairs of genes that
define these parameters. We can view the area covered by the probability distribution of
coalescence time of the more related pair of genes as the sum of two ‘probability areas’,
one part which is a smaller copy of the area covered by the probability distribution function
of coalescence of less related genes, the other part being the remainder of the area for
more related genes (Figure 28.2). This second part decreases faster than probabilities of
coalescence (it is approximately O(c.,t /t), Rousset, 2006), and is therefore concentrated
on the recent past. As a first approximation, the value of the corresponding F -statistics is
this excess probability of recent coalescence. Let us call ω the value of 1 − cw,t /cb,t for
large t . This will also be the excess probability of recent coalescence (as can be deduced
from the fact that both distributions must sum up to 1). Then it can be shown that

Qw:k ≈ (1 − ω)Qb:k + ωπk ⇒ Qw:k − Qb:k

πk − Qb:k

≈ ω ≈ F, (28.5)

where πk is the expected frequency of allele k in the model considered. One may obtain
this result by considering that with probability 1 − ω, the probability of identity of pairs
of genes ‘within’ is the same as the probability of identity of genes ‘between’ (this
corresponds to the proportional parts of the distributions of coalescence times), and with
probability ω (the excess recent probability mass) the coalescence event has occurred
recently in a common ancestor, of allelic type k with probability πk .

rousset
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The above result should not be overinterpreted. Expressions of the form probability of
identity equals (1 − F)p2 + Fp for F independent of p are not generally valid unless p

is the expectation πk and the probability of identity is the process expectation (Rousset,
2002), although they also correctly describe the conditional probability of identity given
p in the infinite island model, even in cases where p is a random variable.

The above logic will be valid as long as mutations can be neglected within the time span
covered by the probability mass. This time span is shorter for higher migration rates m in
the island model, or for high σ 2 relative to spatial distance in isolation by distance models,
so in practice F -statistics are weakly dependent on mutation rates at small spatial scales.
The same argument can also be used to show that F -statistics more quickly recover their
stationary values than probabilities of identity under the same conditions after a single
demographic perturbation, a fact noticed by several authors (e.g. Crow and Aoki, 1984;
Slatkin, 1993; Pannell and Charlesworth, 1999). This kind of approximate independence is
important for statistical applications since it makes F -statistics analyses at a small spatial
scale interpretable despite the fact that past demographic history and mutation processes
are generally not known. At a local scale, FST is also only weakly dependent on the total
population size.

28.3.2 Likelihood Computations

With few exceptions, likelihood computation in population genetics are based on ‘coales-
cent’ arguments, i.e. they derive the probability of the sample from consideration of the
sequence of states that relate the individuals in the sample to their common ancestor (e.g.
Kingman, 1982; Hudson, 1990, Chapter 25, Chapter 26). This sequence of events may
be the genealogy, G, of the sample that includes information about the coalescence time
of ancestral lineages and about which lineages coalesce. In other cases it may be a ‘gene
tree’ H , which takes into account the relative timing of coalescence and mutation events,
as well as the nature of mutation events, i.e. the states before and after mutation, but
which does not take into account the time between events, nor which lineage, among
several with identical state, was involved in each event (see Chapter 26, Griffiths and
Tavaré, 1995).

Coalescent arguments are used to estimate the likelihood by simulation using importance
sampling algorithms. In one class of algorithms (see Chapter 26, Beerli and Felsenstein,
1999), the likelihood of the parameters P as a function of the data D may be written as

L(P; D) =
∑
G

Pr(D|G;P) Pr(G;P), (28.6)

where the sum is over all possible genealogies G,

=
∑
G

Pr(D|G;P)
Pr(G;P)

f (G)
f (G), (28.7)

for any distribution f (G) such that f (G) > 0 when Pr(G;P) > 0

= E
[

Pr(D|G;P)
Pr(G;P)

f (G)

]
, (28.8)
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where E is an expectation over sample paths of a Markov chain with stationary distribution
f (G)

≈ 1

s

s∑
i=1

Pr(D|G(i);P)
Pr(G(i);P)

f (G(i))
, (28.9)

where the sum is over the sample path of a Markov chain with stationary distribution
f (G).

In neutral models, given the genealogy G, the data only depend on the mutation process
with parameters N, while the genealogy itself does not depend on the mutation process
but only on demographic parameters D (with P = (N,D)). Thus we may choose the
importance sampling function

g ≡ Pr(G|D;P0) = Pr(G;D0) Pr(D|G;N)

L(P0; D)
, (28.10)

for some value D0 of D and for P0 = (N,D0). Then from 28.8

L(P; D) = E
[
L(P0;D)

Pr(G;D) Pr(D|G;N)

Pr(G;D0) Pr(D|G;N)

]
= L(P0;D)E

[
Pr(G;D)

Pr(G;D0)

]
, (28.11)

for any N. We try to find the maximum likelihood estimate (MLE) of P or equivalently
the maximum value of

L(P; D)

L(P0;D)
= E

[
Pr(G;D)

Pr(G;D0)

]
, (28.12)

which may be estimated by

L(P; D)

L(P0;D)
≈ 1

s

s∑
i=1

Pr(G(i);D)

Pr(G(i);D0)
, (28.13)

where the G(i)s are generated by a Markov Chain with stationary distribution g. Thus an
algorithm to find the maximum must define such a Markov Chain (for parameters P0),
and compute Pr(G(i);D)/ Pr(G(i);D0) for different P values and for this single Markov
Chain.

Beerli and Felsenstein (1999) have used the importance sampling function (28.10) to
estimate the ratio (28.12). They define a Markov chain on genealogies G, and use the
Metropolis-Hastings algorithm (Hastings, 1970) to ensure that the importance sampling
function g is the stationary distribution of this chain. Their (28.14) shows that the transition
probabilities of this chain are determined by the probabilities Pr(D|G;N), which for
sequence data may be computed as previously described (e.g. Swofford and Olsen, 1990).

Griffiths and Tavaré (1994) have proposed a different class of algorithms. They derive
recursions for the stationary probability Pr(D′|S ′) of a sample D′ given sample size S ′
(here a vector and subsample sizes in different populations) over a time interval (typically
the interval between two genealogical or mutation events). For any state D of ancestors
in the previous time, Pr(D′|S ′) is the probability that a sample of size S′ derives from a
sample of size S, times the stationary probability of ancestral states Pr(D|S), times the
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forward probability that a sample D′ derives from a sample D given the sample sizes:

Pr(D′|S ′) =
∑
D

Pr(D′|D, S, S ′) Pr(S|S ′) Pr(D|S). (28.14)

It is relatively straightforward to express the backward transition probabilities Pr(S|S′)
and the forward transition probabilities Pr(D′|D, S, S ′) in terms of model parameters P
(further details are lengthy; see de Iorio and Griffiths, 2004b). An importance sampling
algorithm is then derived by writing Pr(D′|D,S, S ′) Pr(S|S ′) in the form w(D′D)p(D|D′)
where the p(D|D′) define an absorbing Markov chain going backward over possible
ancestral histories,

Pr(D′) =
∑
D

w(D′D)p(D|D′) Pr(D). (28.15)

Iterating this recursion until the ancestor of the whole sample shows that

Pr(D) = Ep


∏

Di

w(Di, Di−1)


 , (28.16)

where the product is over successive states Di of the ancestry of the sample. Then w is
an importance sampling weight and p is a proposal distribution (compare 28.8).

Different choices of p, and of the implied w, are possible. Griffiths and Tavaré
(1994) describe one such choice and show that the likelihood for different values of
P may be obtained by running the Markov chain for only one value of P. However,
more recent works have aimed to optimize the choice of p for each parameter value
analyzed so that the variance of

∏
Di

w(Di, Di−1) among runs of the Markov chain
would be minimal. An optimal choice of the proposal distribution would be such that
any realization of the Markov chain would give exactly the likelihood of the sample. This
occurs when the proposal distribution has transition probabilities given by the reverse
probabilities in the biological process considered, Pr(D|D′) = Pr(D′|D) Pr(D)/ Pr(D′)
(see Chapter 26). In cases of interest these reverse probabilities cannot be computed from
this formula since the aim is precisely to evaluate the probabilities Pr(D). Nevertheless,
the variance of

∏
Di

w(Di,Di−1) should be low if good approximations for Pr(D)/ Pr(D′)
are used. de Iorio and Griffiths (2004a; 2004b) write such ratios as simple functions of the
probabilities π that an additional gene sampled from a population is of a given allelic type,
conditional on the result of previous sampling, and propose approximations π̂ for them,
from which approximations for Pr(D)/ Pr(D′) and for the proposal distribution follow.
Their approximation scheme method applies in principle for any stationary migration-
matrix model and any Markov mutation model (for allele frequency data). The π̂ are not
given in closed form but as solutions of a system of nd × K linear equations for a model
of nd populations and K allelic types. By assuming independence between the mutation
and genealogical processes, this can be reduced to a system of nd equations holding for
each of the different eigenvalues of the mutation matrix, a technique used by de Iorio
et al. (2005) to analyze a two-demes model with stepwise mutation.

Despite substantial improvement over previous proposals, the computation times of
the latter algorithm would remain prohibitively long in many practical applications.
A method known as product of approximate conditional likelihoods (PAC-likelihood,
Li and Stephens, 2003) has been proposed to derive heuristic approximations of the
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likelihood estimation. Here a sample of genotypes (gk) is described as a sequential
addition of genotypes, so that the likelihood of an ordered sample is the product of the
probabilities π that an additional genotype is gi given previously added genotypes were
g1, . . . , gi−1. Approximations are then considered for these conditional probabilities. This
was originally applied to inference of recombination rate in a panmictic population. Using
de Iorio and Griffiths’s approximations π̂ in one-locus models, it turns out to perform
well under stepwise mutation, where the expectation of the PAC-likelihood statistic was
indistinguishable from the likelihood, but computation was much faster (Cornuet and
Beaumont, 2007). In a linear stepping stone model, one can find small differences between
the expectation of the PAC-likelihood statistic and the likelihood, but estimation of model
parameters based on PAC-likelihood is essentially equivalent to maximum likelihood (ML)
estimation while again requiring far less computation than likelihood computation via the
importance sampling algorithm (F.R., unpublished data).

28.4 INFERENCE UNDER THE DIFFERENT MODELS

In this section I review the implementation and application of the different methodologies
in specific cases. Published genetic and demographic data from Gainj- and Kalam-
speaking people of New Guinea (Wood et al., 1985; Long et al., 1986) will conveniently
illustrate several conclusions.

28.4.1 Migration-Matrix Models

For any migration matrix at stochastic equilibrium, the distribution of frequencies pki of
allele k in each deme i follows some probability distribution with (parametric) covariances
which can be written as

E[(pki − πk)(pki′ − πk)] = Qii′:k − π2
k , (28.17)

where Qii′:k is the expected frequency of pairs of genes in demes i, i′ that are of allelic
type k. For mutation models assuming identical mutation rates between K alleles, this
is also (Qii′ − ∑K

k=1 π2
k )/K , where Qii′ is the probability of IIS of pairs of genes in

demes i, i′. Probabilities of IIS Qii′:k or Qii′ may be derived from the probabilities of
IBD for various mutation models (Markov chain models, or stepwise mutation models;
see e.g. Tachida, 1985; Rousset, 2004). For any migration matrix model, probabilities
of IBD within and among demes can be computed as solutions of a linear system of
equations (see e.g. Nagylaki, 1982 or Rousset, 1999a; 2004 for details and examples). In
principle, the demographic parameters can be estimated by inverting such relationships.
This approach has been taken seriously only in a few cases, in particular the island
and isolation-by-distance model, as detailed below, and does not generate likelihood
expressions in a straightforward way, although some heuristic likelihood formulas have
been proposed (Tufto et al., 1996) by using Gaussian approximations for the distribution
of allele frequencies, with the covariances given above.

28.4.2 Island Model

In the island model, one has the well-known approximation FST ≈ 1/(1 + 4Nm) (with 2N

genes per deme, Wright, 1969). This has led to the usage of computing FSTs and expressing
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the results in terms of ‘estimates of Nm’, i.e. in terms of (1/F̂ − 1)/4. This usage is often
problematic. The worst sin is to estimate an FST between a pair of samples far apart, to
translate it into a nonzero ‘Nm’, and to conclude that the populations must have exchanged
migrants in the recent past. In the context of the island model, an FST between a pair of
subpopulations is not a function of the number of migrants exchanged specifically between
these two subpopulations. More generally, in many models of population structure, it
is expected that subpopulations that never exchange migrants will have nonzero ‘Nm’
values. It may be seen from the above definition of FST that its maximum value is the
probability of identity within demes Q2 (when Q3 = 0), which results in a minimum
possible value of ‘Nm’ of (1/Q2 − 1)/4 which may well be > 1 even for demes that
never directly exchange migrants. Likewise, the practice of equating Nm > 1 to panmixia
and Nm < 1 to divergence is not useful.

Likelihood functions for allele frequency data may be derived relatively easily by
diffusion techniques for the infinite island model (see (28B.5)) and can in principle be
recovered by coalescent arguments (Balding and Nichols, 1994). These sampling formulas
allow analytical insight, and may be used to define estimators of Nm as well as to discuss
efficient estimation of FST by moment methods (See Appendix B). Kitada et al. (2000)
have implemented likelihood estimation under this model. Approximation have also been
considered such as the ‘pseudo maximum likelihood estimator’ (PMLE, Rannala and
Hartigan, 1996) of the number of migrants in an island model (see (28B.6)). These
authors found that this estimator of Nm generally (though not always) had lower mean
square error than the moment estimator (1/F̂ − 1)/4, depending on sampling scheme
and Nm values. The MLE is also biased when the number of sampled populations is
small and some corrections have been proposed (Kitakado et al., 2006). For the New
Guinea population, application of pseudo maximum likelihood (PML) estimation yields
an estimate of 10.2 migrants per generation. This is one-fourth of the average value, 41.87,
that can be computed from maternal and paternal dispersal rates and total subpopulations
sizes (Tables 1–3 in Wood et al. (1985)), but it is closer to one third if we take ‘effective
size’ considerations into account following Storz et al. (2001).

In comparison with the simulation methods for likelihood computation, it should be
noted that no mutation model has to be considered here. Wright’s formula (28B.1) is
an approximation for low mutation, common to the different ‘Markov chain’ models of
mutation, and so is the likelihood formula (28B.5). In this respect it is analogous to the
methods based on F -statistics.

28.4.3 Isolation by Distance

Here analytical insight is available only for the moment methods. The results reviewed
here are not tied to a Gaussian model of dispersal. We consider

a(r) ≡ Q0 − Qr

1 − Q0
, (28.18)

which is FST/(1 − FST) at (vectorial) distance r. Approximations for FST immediately
follow from those for a(r). I will use a dot on a or Q to emphasize that the results given
hold strictly only for IBD, but the differences with IIS do not affect the main practical
conclusions drawn below (Rousset, 1997).
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Two cases are usually considered, the one-dimensional model for populations in a linear
habitat, and the two-dimensional model. In one dimension, at distance r ,

ȧ(r) ≈ A1

4Nσ
+ 1 − e

−(2u)1/2r

σ

4Nσ(2u)1/2

rsmall≈ A1

4Nσ
+ r

4Nσ 2
≈ A1

4Dσ
+ r

4Dσ 2
, (28.19)

where A1 is a constant determined by the dispersal distribution, but not by N nor u. Its
definition is given by Sawyer(1977, eq. 2.4).

In two dimensions, for genes at Euclidian distance r ,

ȧ(r) ≈ − ln((2u)1/2) − K0((2u)1/2r/σ ) + 2πA2

4Nπσ 2

rsmall≈ ln(r/σ ) − 0.116 + 2πA2

4Nπσ 2

≈ ln(r/σ ) − 0.116 + 2πA′
2

4Dπσ 2
, (28.20)

where K0 is the modified Bessel function of second kind and zero order (e.g. Abramovitz
and Stegun, 1972), and A2 is of the same nature as A1 above. Its definition is given by
Sawyer, (1977, eq. 3.4); see also Rousset (1997 eq. A11).

In the last two equations the first expression is given for σ measured in the length
unit of the model (i.e. one interdeme distance on the lattice), the second is the small
distance/low mutation limit of the first, and the third is the second for any length unit.
They are in terms of population density D per length or surface unit, and the A′

2 constant
depends on the length unit.

In the same equations, the second approximation shows a linear relationship between
ȧ(r) and geographical distance in one dimension, and between ȧ(r) and the logarithm of
geographical distance in two dimensions. In both cases, the slope of this relationship is a
function of Dσ 2.

These different expressions emphasize two points. First, differentiation is a function
of the A constants, which are not simple functions of σ 2 but also of other features of
the dispersal distribution. In fact, when the total migration rate is low, the differentiation
between adjacent subpopulations is close to that expected under an island model with the
same total number of migrants. This confirms that σ 2 is not the only relevant parameter
of the dispersal distribution. Second, the value of A′

2 depends on the spatial unit chosen
to measure σ and D. A method of inference from A′

2 values that would not take into
account the discrepancy between the length unit used and the idealized interdeme distance
would therefore be internally incoherent.

The above approximations allow a relatively simple description of the expected
differentiation in these models as well as relatively simple estimation of Dσ 2 from
genetic data. Estimates of a(r) at different distances may be obtained in some cases
as estimates of FST/(1 − FST) for pairs of samples, and simply regressed to spatial
distance (Rousset, 1997, as implemented in GENEPOP, Raymond and Rousset, 1995).
An estimate of 1/(Dσ 2) may be deduced from the slope of the regression. Two early
applications of this method yielded estimates about twice the demographic estimate
(Rousset, 1997). For the New Guinea population, the regression equation FST/(1 −
FST) =̂ 0.0191 + 0.0047 ln(distance in km.) provides an estimate of Dσ 2 which is about
twice the demographic estimate (after application of effective density correction following
Storz et al. (2001), and after correction of clerical errors affecting the reported σ 2 of
females and males in Rousset (1997), which should be 3.1 and 0.76 km2 respectively).
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When the migration rate is low, an estimate of the number of immigrants per generation
may also be computed by the ‘(1/F̂ − 1)/4’ method, taking the value of the estimated
regression equation at the distance between the closest subpopulations as an estimate of
F̂ /(1 − F̂ ). The estimate of number of migrants in the New Guinea population is then
11.5, close to the pseudo maximum likelihood estimate (10.2, see above). This result
illustrates the approximate convergence of estimates by different methods and under
different dispersal models to Wright’s classic result, even though the dispersal rate in
this study is not precisely low (its average value being 0.43 from demographic data).

The regression of FST/(1 − FST) to distance is not always applicable, particularly when
there are no recognizable demes of several individuals, as for ‘continuous’ populations. A
variant based on the comparison of pairs of individuals has been designed to address this
problem (Rousset, 2000). Simulations have shown that this method performs reasonably
well when σ is small (a few times interindividual distance at most) and when most
individuals are sampled within an area of about 20σ × 20σ (Leblois et al., 2003,2004).
For higher dispersal, the variant considered by Vekemans and Hardy (2004) provides
more accurate upper confidence bounds for Dσ 2 (Watts et al., 2007). Several comparisons
have found agreement within a factor of two with independently derived demographic
estimates (Rousset, 2000; Sumner et al., 2001; Winters and Waser, 2003; Fenster et al.,
2003; Broquet et al., 2006; Watts et al., 2007). Whether this is considered an important
discrepancy or not will depend on the accuracy expected from such analyses, but this is
certainly much better than usually reported (see e.g. Slatkin, 1994; Koenig et al., 1996).
They actually go against an earlier long stream of reported discrepancies between genetic
and demographic estimates, which needs explaining.

Part of the discrepancies hinge on misunderstandings of the models. For example,
Wright assumed that the value of F -statistics under isolation by distance (Wright, 1946)
was determined by the ‘neighborhood size’. The value of this parameter would be
2Dσ 2 under the assumption of two-dimensional Gaussian dispersal and its more general
definition would be a function of ‘the chance that two uniting gametes came from the same
individual’ (Wright, 1946). A third common ‘definition’ found in the literature is that the
‘neighborhood size’ would be the size of a subpopulation that would behave as a panmictic
unit. It is not clear in which respect the subpopulation would behave as a panmictic unit
nor whether there is a subpopulation that behaves as a panmictic unit in some useful sense.
In any case Wright’s measures do not correctly predict the value of unambiguously defined
parameters in unambiguously defined models. In the analysis of Malécot’s model, neither
Dσ 2 (because of the important A2 term), nor the more generally defined neighborhood,
determine the differentiation alone (Rousset, 1997). In one dimension, Wright proposed
that Dσ was the important parameter, but the above results show that Dσ 2 is important.
One must give up the idea that Dσ 2 equals neighborhood equals a number of individuals.
In one dimension, Dσ 2 scales as number of individuals times a length, not as a number
of individuals, since density is a number of individuals per unit length.

The neighborhood concept was an attempt to account for different families of dispersal
distributions. On the other hand, it has recurrently been assumed that differentiation is
essentially a function of σ 2 and not of other features of the dispersal distribution. If so,
it would be easy to seemingly improve on the regression method by considering only a
family of dispersal distributions with a single parameter, completely determined by σ 2, for
example a discretized Gaussian. In this case, FST or a(r) values, not simply their increase
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with distance, would contain information about σ 2. But such improvements would not be
robust to misspecification of the dispersal distribution.

To explain reported discrepancies, it has often been argued that genetic patterns
are highly sensitive to long-distance dispersal, which occurrence is easily missed in
demographic studies. While some genetic patterns are indeed affected by long-distance
dispersal (e.g. Austerlitz et al., 2000), this is much less so for the patterns considered in the
regression analyses, and this contributes to their concordance with demographic estimates.
If a fraction m of immigrants come from an infinite distance (so that the ‘true’ σ 2 is infinite
and does not predict any local pattern of differentiation), such migrants will be unrelated
to their neighbors, and these migration events are analogous to mutation events. Hence
we can deduce the effect of such immigrants from the effect of mutation, e.g.

ȧ(r) ≈ − ln(
√

2m) − K0(
√

2mr/σ̂ )

2Dπσ̂ 2
+ constant, (28.21)

where σ̂ is the parameter of the dispersal distribution for the fraction 1 − m of locally
dispersing individuals. This result implies that there is an approximately linear increase of
differentiation, determined by Dσ̂ 2, roughly up to distance 0.56σ̂ /

√
2m (from Figure 3

in Rousset (1997)). For example if we ignore a 1 % (respectively, 0.1 %) tail of the distri-
bution of dispersal distance in a demographic study which estimates σ̂ = 10 distance
units, the prediction of increase of differentiation with distance will reach 20 % error at
0.56σ̂ /

√
2m = 39.6 (respectively, 125) distance units. This is a wide overestimate of the

error for any data set spread over such a distance, but more accurate predictors of bias
will depend on the distribution of spatial distances in the sample.

Naive application of testing methodology has been another factor contributing to
confusion. The absence of a pattern of isolation by distance (null slope of the regression,
Dσ 2 infinite) may be tested by the exact permutation procedure known as the Mantel test
(Mantel, 1967; see Rousset and Raymond, 1997, for a simple description). In practice,
nonsignificant test results have often been interpreted as evidence that dispersal is not
localized. However, the Mantel test has often been applied in conditions of low power.
In many populations with localized dispersal, the value of Dσ 2 will be large, and thus
expected patterns of isolation by distance (increase of differentiation with distance) will
be weak (particularly in two-dimensional habitats), even though differentiation will be
inferred by classical tests for differentiation.

Finally, variation in expected gene diversity due to spatial heterogeneity of demographic
parameters may result in larger variation in expected differentiation than that due to
isolation by distance. For example, if several demes with very small deme size and
restricted dispersal are clustered in space, they will have low expected gene diversity and
will show a larger differentiation between them than with more distant demes with higher
expected diversity, and the above methods will obviously fail unless this heterogeneity is
taken into account (Rousset, 1999b).

28.4.4 Likelihood Inferences

Maximum likelihood methods have not been developed and tested to a comparable level.
The migration matrix models have been implemented for allele frequency and sequence
data in the software MIGRATE. A more restricted set of models based on the ‘isolation-
with-migration’ scenario has been implemented in the software IM (Nielsen and Wakeley,
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2001; Hey, 2005). In the coalescent algorithms as in previous inferences based on per-
locus information from samples taken at one time, it is not possible to estimate the
deme sizes, mutation rates, and immigration rates separately: only products of deme size
with migration probability and mutation probability, and (as a consequence) the ratio of
migration and mutation probabilities, can be estimated. In the latest version of IM it is
possible to analyze the divergence between two populations in terms of their deme sizes
scaled relative to mutation rate (N1µ and N2µ), of immigration rates in each of them
m1 and m2, either scaled relative to deme size (e.g. N1m1) or relative to mutation rate
(e.g. m1/µ), of the scaled size of the ancestral population, and of relative fractions of this
ancestral which contributed to the two descendant populations.

In a two-populations setting, one study has compared ML estimates with demographic
estimates and with some other genetic estimation methods (Wilson et al., 2004). Both
ML and the two-locus method of Vitalis and Couvet (2001) produced estimates roughly
in agreement with demographic data, while FST did not. It appears difficult to estimate
all parameters of a four-demes migration-matrix model (Beerli, 2006). Likewise, it has
not been possible to choose among different scenarios of colonization of the Americas
using the IM software (Hey, 2005). The effect of unsampled demes on estimation of
dispersal between two sampled demes has been investigated by Beerli (2004), for sequence
data (100 000 bp per individual). As expected, the biases increase with immigration
from the unsampled population(s), but it was found that estimates of immigration rate
between the two populations were hardly affected by an equal total immigration rate from
unsampled population(s) (estimates of scaled populations sizes were more affected). Abdo
et al. (2004) argued that confidence intervals given by MIGRATE are not accurate, a fact
attributed to too short run times of the algorithm (Beerli, 2006).

The above simulation scenarios are rather distinct from those considered in the previous
section, and it would be hard to perform ML analyses of the New Guinea data using current
software. With MIGRATE for example, estimation of a full migration matrix from the New
Guinea data has been attempted (R. Leblois and F.R., unpublished results), yielding larger
estimates of dispersal than inferred by the regression method described above and from
demographic data. Attempts to estimate fewer parameters could be more successful. In
addition, one can question the convergence of the Markov chain algorithm, a problem
which remains with no easy solution (e.g. Brooks and Gelman, 1998). In this respect,
the importance sampling algorithms of Griffiths and collaborators are more convenient as
estimates are derived from independent runs of an absorbing Markov chain (28.15), so
traditional techniques based on independent variables apply.

28.5 SEPARATION OF TIMESCALES

The properties of F -statistics illustrate the more general idea of separation of timescales,
in which some events occur at a much faster rate than others. For example, in an island
model, when the number of demes nd increases indefinitely, the rate of coalescence of
ancestral lineages of genes sampled in different demes decreases as 1/nd, while for genes
sampled within the same deme, the probability of coalescence of ancestral lineages in
some recent generation is nonvanishing in this limit. Thus the events in the genealogy of a
sample can be described as a sum of two processes, a fast process by which lineages either
coalesce within the demes they are sampled or separate in distinct demes, at rate O(1) as
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nd → ∞, and a slow process by which genes in different demes coalesce at rate O(1/nd)

as nd → ∞ (e.g. Wakeley and Aliacar, 2001). This slow process is a rescaled version
of the well-studied coalescence process for an unstructured population (the n-coalescent,
Kingman, 1982; Chapter 25).

Under a separation of timescales, the likelihood can be expressed in terms of distinct
terms for fast and slow processes (see Nordborg, 1997 for a population with selfing), and
in the above example, analytical results or simulation techniques for the n-coalescent can
be used as soon as ancestral lineages have separated in different demes in a simulation of
the ancestry of a sample. The traditional formula giving probability of identity conditional
on allele frequency as (1 − F)p2 + Fp also results from such a separation of timescales,
provided that allele frequency does not change in the total population until the completion
of the fast process.

However, convergence to the n-coalescent may hold under sometimes restrictive
conditions. No convergence to the n-coalescent has been found in one-dimensional models
of isolation by distance (Cox, 1989; Wilkins, 2004). In two-dimensional models on a
lattice of size L × L, the genealogy of genes sampled far enough (at distance O(L))
from each other converges to that of an unstructured population (the n-coalescent) with
coalescence events occurring at rate O(1/[L2 ln(L)]) as L → ∞ (Cox, 1989; Zähle et al.,
2005). A separation of timescales may hold if the genealogy of genes sampled closer in
space compounds a process of ‘fast’ coalescence (in less than O[L2 ln(L)] generations)
and the n-coalescent. The closest results are those of Zähle et al. according to which
genes at distance O(Lβ) for 0 < β ≤ 1 either coalesce in less than L2/2 generations
with probability 1 − β, or follow the scaled n-coalescent with probability β. This differs
qualitatively from the island model where the fast process becomes negligible in finite
time, so defining a finite time span for a fast process from these results seems less than
straightforward. Instead, they suggest applying n-coalescent approximations in a backward
simulation algorithm when ancestral lineages are distant enough relative to the total size
of the lattice, although the minimal distance to consider is itself not obvious since all
results stand for β > 0 only, i.e. for spatial separation of genes increasing with L. As
shown in Figure 28.2, a separation of timescales holds for fixed distance and fixed Nσ 2,
with the fast process vanishing in finite time, but the slower process is not an n-coalescent.

Some moment methods have attempted to extract more information from the data by
taking into account allele size (for microsatellites) or DNA sequence divergence. However,
in an island model, most of the information about Nm is in whether genes sampled within
a deme have their most recent common ancestor within this deme (in which case they are
identical, unless mutation rates are higher than migration rates). Otherwise, the ancestral
lineages separate in different demes, and in this case the allelic divergence may contain
little useful information about dispersal rates. This may explain why moment methods
based on microsatellite allele size often yield estimates of demographic parameters with
higher variance and mean square error than estimates derived from allelic identity statistics
(Gaggiotti et al., 1999; Balloux and Goudet, 2002; Leblois et al., 2003) despite their lower
asymptotic bias (Slatkin, 1995), except when mutation rates are larger than migration rates
(Balloux et al., 2000) or when genetic correlations are not determined by a distinctly fast
process (Tsitrone et al., 2001). A key issue in evaluating the performance of likelihood
methods will be the extent to which they specifically capture the information from fast
processes and how much better they are than pair-wise identity methods in this respect.
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28.6 OTHER METHODS

As likelihood computations are often difficult, simulation methods based on other
summary statistics have been developed. In essence, the likelihood of the data is
substituted with the probability of observing in simulations values of a summary statistic
S sufficiently close to its value observed in the data. These methods are reviewed
by Beaumont (see Chapter 30) and have been applied to some subdivided population
scenarios (Estoup et al., 2004; Hamilton et al., 2005). There is a huge collection of other
methods of analysis of spatial patterns of genetic variation in the literature. Here again a
small selection is presented on the basis of their impact in the field or of their perceived
practical validity.

28.6.1 Assignment and Clustering

Of particular interest are assignment methods, which aim to assign individuals to their
subpopulations of origin. For example, in an ecological perspective it may be useful
to know whether immigrants differ from residents in some aspects of their behavior,
and therefore to individually identify immigrants; further it might be of interest to
identify their habitat of origin. Sometimes there will be independent information about
the potential source populations. A more challenging problem (on which this section will
focus) is to estimate dispersal rates by inferring the number of subpopulations and then
assigning individuals to them (see Chapter 30 for other aspects of these methods). In this
perspective, the traditional problem of clustering becomes part of the assignment task.

Assignment methods stem from the idea that individuals are more likely to originate
from populations with higher frequencies of the alleles they possess. Thus, considering an
haploid organism for simplicity, for each individual one can compute a statistic such as

K∏
k=1

q̃
xk

ki , (28.22)

where q̃ki is the observed frequency for allele k in sample i (possibly with some correc-
tion such as excluding the focal individual itself), and xk = 1 if the individual bears allele
k and xk = 0 otherwise. This is usually viewed as a likelihood statistic (e.g. Paetkau
et al., 1995). If each locus is considered independent of the others, multilocus statistics
are the product of single locus statistics, and the individual is assigned to the sample i

that maximizes the multilocus statistic.
It can be expected that, given some differentiation between different subpopulations,

this method will preferentially assign an individual to its original subpopulation. It is also
expected that such assignments will be more accurate when differentiation is higher. More
generally, if the individuals are correctly assigned to their subpopulations of origin, then
we could estimate from the same data and the same likelihood formulas the dispersal rates
between each of them in the last round of dispersal, independently of past dispersal rates.
Conversely if we cannot consistently estimate the dispersal rates in this way, this implies
that there is no way to consistently assign individuals to their populations of origin. So
we consider the question whether we can estimate the dispersal rate in order to address
the question whether immigrants can be assigned to their population of origin.

Consider the allele frequencies in the subpopulations before the last round of dispersal
(pki for allele k in subpopulation i), and the dispersal rate for this last round of dispersal
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(mii′ from subpopulation i′ to i). For each locus and each individual in sample i the
likelihood is approximately

∏K
k=1 q

xki

ki where qki = ∑
i′ mii′pki′ is the frequency of allele

k in subpopulation i after the last round of dispersal. For the total sample from nd demes
the likelihood is therefore proportional to

nd∏
i=1

K∏
k=1

q
nki

ki . (28.23)

Since one can always explain the data by some model assuming that there was no dispersal
in the last round, there is not enough information in the data to separately estimate
the dispersal rates and the pkis, at least when each locus is considered independent of
the others as done previously. This implies that it is not possible to consistently assign
individuals to their populations of origin without introducing additional assumptions or
additional knowledge.

The most obvious assumption is to assume no linkage disequilibrium within populations
before dispersal, which is a good approximation for many organisms (though not highly
selfing ones). In principle, one- and two-locus measures of genetic association contain
information which allows to estimate separately dispersal rates and subpopulation sizes. A
numerical method has been developed to use such information (Vitalis and Couvet, 2001).
Assignment methods may be viewed as using multilocus associations, in that their current
formulation relies on assuming no within-population disequilibria. Additional assumptions
have been made, for example specifying a prior probability model for the distribution of
allele frequencies, often a Dirichlet distribution as per an island model (see (28B.1);
Rannala and Mountain, 1997; Falush et al., 2003; Wilson and Rannala, 2003; Corander
et al., 2003). In this respect, although an asserted aim of such methods is to infer migration
rates without the many assumptions of other methods, the stationary island model is still
lurking in the background.

How do these methods perform in practice? Cornuet et al. (1999) reported >75 %
correct assignment probabilities by Rannala and Mountain’s method for populations
diverged since several hundred generations. Évanno et al. (2005) found that the ‘most
likely’ number of populations reported by the program STRUCTURE was a biased estimator
of the actual number of populations. Waples and Gaggiotti (2006) reported that this
program correctly identified the number of populations when the number of immigrants
per population was less than 5, mutation rates were high, and for large sample size
(20 loci genotype in 50 individuals from each population), but quickly degraded in other
conditions. The latter study also reported similar problems with the methods implemented
in the programs BAPS (Corander et al., 2003) and IMMANC (Rannala and Mountain,
1997), and found that a method based on traditional contingency tests of spatial structure
performed better than these different methods in identifying the number of populations.
In a comparison with mark-recapture data, Berry et al. (2004) found good performance
in estimating dispersal. In this study, the populations were known in advance and at most
4, the number of immigrants was known from mark-recapture data to be small, and the
latter information was somehow used as prior information in STRUCTURE.

Most of the recently formulated methods have been presented as ‘Bayesian’, a label
which in practice covers various compromises between subjective Bayesian (e.g. Lindley,
1990) and frequentist (Neyman, 1977) statistics, to the point of being uninformative.
However, numerous accounts of supposed differences between Bayesian and frequentist
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methods have drawn attention away from the real issue, which is the criterion by which
to measure the performance of statistical methods. It is always possible to generate ‘better
than previous’ methods by changing the measure of average performance. In the context of
estimation of dispersal rates, the results of Beerli (2006) illustrate this, where performance
averaged over a prior distribution for model parameters was better than that of maximum
likelihood ignoring the prior distribution, a predictable result from textbook statistical
theory (Cox and Hinkley, 1974, Chapter 11; Lehmann and Casella, 1998, Chapter 4).
Likewise, the performance of an assignment method defined in terms of priors over
allele frequencies may be evaluated in terms of its performance for any given allele
frequency, or of averaged performance over the distribution of allele frequencies. The
context of scientific inference should determine the appropriate measure of performance,
but the averaged measure can balance misleading assignment inferences in some species
with more efficient inferences in some other species, depending on the spectrum of
allele frequencies in different species. One may need to know when this is the case,
and comparing results for two choices of the prior distribution is not enough in this
respect.

As seen above, a more prosaic problem with assignment methods is that it is
difficult from available information to give simple bounds on the frequency of erroneous
inferences, even averaged over prior distributions.

28.6.2 Inferences from Clines

An important class of models of spatial structure for selected genes are the cline models.
Clines arise in two contexts: selection for two distinct alleles or genotypes in two
adjacent habitats exchanging migrants, or selection against hybrid genotypes between
two taxa (‘tension zones’). Theoretical models predict the shape of clines, notably the
steepness in the cline center, as a function of the σ parameter defined above and of
one or several selection coefficients (for tension zones: Bazykin, 1969; Barton, 1979;
for selection variable in space: Nagylaki, 1975). Additional information on dispersal and
selection is given by linkage disequilibria between loci. Such methods, therefore, depend
on assumptions specific to each case study (e.g. external information on recombination
rates and epistasis between loci).

A typical expression for the shape of a cline, i.e. for allele frequency p at distance
x − x0 from the center of the cline, is p = (

1 + exp((x0 − x)(2s)1/2/σ)
)−1

(Bazykin,
1969; Barton, 1979). In the center of the cline, it holds approximately for different models
of selection (Barton and Gale, 1993) and is relatively insensitive to the shape of the
dispersal distribution, as a small rate of unaccounted long-distance immigration has little
effect on the shape of the center of the cline (Rousset, 2001). Inferences about s and σ

separately are possible by considering multilocus clines and by taking linkage disequilibria
into account. Then, the expected shapes of clines must be computed numerically. Drift is
neglected relative to selection: Allele frequencies in the different subpopulations are fixed
values, functions of the parameters defining the demography and the selection regime,
not random variables as in the neutral models.

The likelihood function is then given by multinomial sampling in each subpopulation.
Thus, the statistical model is conceptually straightforward and relatively easily tailored to
the specific demography and selection regime of different organisms, at least when only
a few loci subject to selection need be considered and when the expected frequencies of
each genotype are directly computed using recursion equations for specific values of the
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parameters to be estimated (e.g. Lenormand et al., 1999). Variants of the Metropolis
algorithm (Metropolis et al., 1953) including simulated annealing (Kirkpatrick et al.,
1983) have been used to find MLEs (a software ANALYSE is distributed by Barton and S. J.
Baird, http://helios.bto.ed.ac.uk/evolgen/Mac/Analyse/). Sites et al.
(1995) reported an agreement with demographic estimates of σ similar to that of isolation-
by-distance analyses reported above.

28.7 INTEGRATING STATISTICAL TECHNIQUES INTO
THE ANALYSIS OF BIOLOGICAL PROCESSES

Several of the methods reviewed in this chapter have been both widely used and widely
criticized. Much of the criticisms rest on the difficulty of formulating precise quantitative
models of population genetic processes. Theoretical studies of robustness are important,
but may themselves overlook factors that turn out to be important in natural populations.
For these reasons, this review has emphasized comparisons with demographic estimates.
Independent demographic estimates may have their own problems, but it will be hard to
detect misapplications of the genetic inferences if no such comparison is made. This last
section discusses some of these problems and partial solutions to them.

We have seen that many discrepancies between ‘models and data’ inferred from
empirical studies using F -statistics derive from various misunderstandings of the models.
The more successful studies, in terms of comparisons with independent estimates, were
conducted at a small spatial scale (between 1 and 20 σ ). This is somehow unavoidable
because of the need for good demographic data in these comparisons, but one may expect
larger discrepancies over larger spatial scales, for many reasons: spatial variation of
demographic parameters should be taken into account; the effects on genetic differentiation
of some demographic events such as range expansions will be more likely to be observed
(Slatkin, 1993); mutation will have measurable consequences (e.g. Estoup et al., 1998);
and selection variable in space may also affect the markers.

A frequently raised concern is the possible nonneutrality of the markers used. On the
positive side a number of authors have realized that divergent selection would increase
levels of differentiation between different subpopulations. Thus potentially selected loci
may be detected in a first step by ‘weak’ statistical approaches such as classifying loci
as showing structure or not by conventional significance tests (see Kreitman, 2000 for
tests of selection at a molecular level not specifically using geographical information).
Formal statistical evidence for selection may be obtained by other experiments in a second
step. This approach has proven efficient (e.g. Feder et al., 1997). Lewontin and Krakauer
(1973) proposed a quantitative test of selection from the heterogeneity of FST estimates.
This procedure was inadequate in several ways, but there have been more recent attempts
to refine the detection of candidate selected loci (e.g. Beaumont and Nichols, 1996; Vitalis
et al., 2001; Beaumont and Balding, 2004).

Another often expressed criticism of the models and analyses reviewed above is that
they assume equilibrium, while the populations are often not at demographic equilibrium,
i.e. population sizes and migration rates fluctuate in time. If so, it is not clear what is
estimated by such techniques: the present demography, an average over ‘recent’ times, a
‘long-term’ average, or none of them? If the fluctuations can be described as a fast process,
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they may be described by some effective size correction. In other cases, such as the range
expansion of a species, this cannot be so, and either modeling the demographic expansion,
or using methods insensitive to it, are the only coherent alternatives. To understand this,
it suffices to note that spatial patterns of pairs of genes approach equilibrium faster the
smaller the spatial scale considered. Therefore, if the effect of a demographic event was
captured by some effective size correction, the effective size would differ at different
scales. Hence this effect cannot be described by a single effective size characterizing the
total population.

One way to avoid some assumptions of equilibrium is to analyze sequential samples.
All the above methods assume that samples have been taken at one point in time, yet
sometimes temporal information is available. See e.g. Robledo-Arnuncio et al. (2006)
for inferences of dispersal distributions from mother–offspring data, Wang and Whitlock
(2003) for estimation of immigration rate and deme size from samples over wider time
spans, and Ewing and Rodrigo (2006) for implementation of Markov chain algorithms
for inference of changes in demographic parameters from sequential samples.

The idea of estimating dispersal parameters such as σ is also open to difficulties. By
allowing an arbitrarily small fraction of immigrants to come from far enough, it is easy
to design cases where the theoretical σ value would be arbitrarily large, and where long-
distance immigrants would have arbitrarily small effect on the likelihood of samples.
The question that one must address prior to statistical analysis is how important such
long-distance immigrants are for population processes. For example, the speed of range
expansions is known to be affected by the most extreme long-distance migrants in a way
generally not characterized by the σ parameter (Mollison, 1977; Clark et al., 2001), so if
one is interested in characterizing such processes, not only it will be difficult to estimate
σ but this may be irrelevant. One the other hand, some processes of local adaptation (as
may lead to allele frequency clines, for example) are not very sensitive to long-distance
migrants, and then approximations ignoring them are not only adequate but required to
formulate good statistical inferences.

Current methods of estimation still have low range of applications, low efficiency,
or both. In principle, this can be improved by the development of likelihood methods,
yet this leaves room for different methodologies, and it is unclear how far research
practices will be improved. One common theme is that genealogical structure is affected
by events occurring at different timescales, and that inferences based on models of the
faster processes could be relatively independent to uncontrolled historical processes, and
therefore perhaps more reliable. It is not yet clear how much complexity we can add in
the models, for given data, nor where will be the limit between reliable and unreliable
inference; further, the answer will likely differ whether sequence data or allele frequency
data are considered.
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APPENDIX A: ANALYSIS OF VARIANCE AND PROBABILITIES
OF IDENTITY

Here we detail the relationship between classical formulas for estimators of F -statistics
and expressions in terms of frequency of identical pairs of genes. In the framework
considered here, negative ‘components of variance’ (which are actually not variances)
arise naturally.

We use the following notation: the total sample is made up of samples of ni

(i = 1, . . . , ns) individuals in ns subpopulations; Xij :k is an indicator variable for gene
j (j = 1, . . . , ni) in sample i being of allelic type k (k = 1, . . . , K), i.e. Xij :k = 1 if
the sampled gene is of type k and Xij :k = 0 otherwise; standard dot notation is used for
sample averages: e.g. for weights wj , X. ≡ (

∑
j wjXj )/(

∑
j wj ) is a weighted average of

the Xs. Here the weighting for each individual will be simply 1. A discussion of optimal
weighting with respect to allele frequencies or samples sizes will be given in Appendix B.
The indicator variables are given a single index (Xj ) if no reference is made to a specific
sample. πk is the expected frequency of allele k, the expectation of Xj :k over independent
replicates of some evolutionary process (typically a mutation–drift stationary equilibrium,
but this is in no way required).
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For haploid data the statistical model is generally described as

Xij :k = µ + αi + εij , (28A.1)

µ = πk here, αi is a random effect with zero mean and variance σ 2
a , and εij is a random

effect with zero mean and variance σ 2
e . It is also assumed that E[αiαi′ ] = 0 for i 	= i′ and

that E[εij εij ′] = 0 for j 	= j ′ (e.g. Searle, 1971, p. 384), but this is precisely what we will
not do here, in order to obtain the most general analogy. What remains more generally
valid is a basic algebraic relationship of analysis of variance,∑

j

wj (Xj − µ)2 =
∑
j

wj (Xj − X. + X. − µ)2

=
∑
j

wj (Xj − X.)
2 +

∑
j

wj (X. − µ)2, (28A.2)

for any variable X and weights wj because we still have
∑

j wj (Xj :k − X.:k) = 0 by
definition of X.:k .

The method of analysis of variance is then based on the computation of weighted sums
of squares related as follows:

ns∑
samples

ni∑
genes

wi(Xij :k − X..:k)
2 =

ns∑ ni∑
wi(Xij :k − Xi.:k)

2

+
ns∑ ni∑

wi(Xi.:k − X..:k)
2 (28A.3)

≡ SSw[ithin] + SSb[etween]for allele k. (28A.4)

For wi = 1 these sums of squares will be expressed in terms of S1 ≡ ∑
i ni and

S2 ≡ ∑
i n2

i , of the observed frequency of pairs of different genes within samples
which are both of type k, Q̂2:k ≡ ∑

i

∑
j 	=j ′ Xij :kXij ′:k/(S2 − S1), and of the observed

frequency of pairs of different genes between samples which are both of type k,
Q̂3:k ≡ ∑

i 	=i′
∑

j,j ′ Xij :kXi′j ′:k/(S
2
1 − S2). We first express the sums of squares using

(28A.2), as follows:

SSw =
∑

i

ni∑
j

(Xij :k − Xi.:k)
2 =

∑
i

ni∑
j

(Xij :k − πk)
2 −

∑
i

ni(Xi.:k − πk)
2, (28A.5)

and

SSb =
∑

i

ni∑
j

(Xi.:k − X..:k)
2 =

∑
i

ni(Xi.:k − πk)
2 − S1(X..:k − πk)

2. (28A.6)

The values of different variables that appear in these expressions, (Xj :k − πk)
2 and

(Xj :k − πk)(Xj ′:k − πk), for pairs j, j ′ of different genes, are summarized in Table 28.1
where Q:k is the probability that both genes of a pair are of type k. Note that E[(Xj :k −
πk)(Xj ′:k − πk)] is the covariance between allele frequencies in the subpopulations from
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Table 28.1 Values of variables in comparisons of pairs of genes.

Pair of gene kk k, not k None k

Probability of each pair Q:k 2(πk − Q:k) 1 − 2πk + Q:k

Frequency in total sample Q̂:k 2(π̃k − Q̂:k) 1 − 2π̃k + Q̂:k

Variable Value of variable for each pair

(Xj :k − πk)(Xj ′:k − πk) (1 − πk)
2 −πk(1 − πk) π2

k

(Xj :k − πk)
2 + (Xj ′ :k − πk)

2 2(1 − πk)
2 (1 − πk)

2 + π2
k 2π2

k

which j and j ′ are sampled. From this table we see that

σ 2
a + σ 2

e = E[(Xj :k − πk)
2] = πk(1 − πk), (28A.7)

E[(Xj :k − πk)(Xj ′:k − πk)] = Q:k − π2
k . (28A.8)

where Q:k is Qw:k = Q2:k for two genes within a sample and Qb:k = Q3:k for two genes
between samples. In particular we have

Q2:k − π2
k = Cov[XijXij ′ ] = σ 2

a + E[εij εij ′], (28A.9)

Q3:k − π2
k = Cov[XijXi′j ′] = E[αiαi′ ]. (28A.10)

The latter expression confirms that E[αiαi′] 	= 0: in general two genes in different
subpopulations are more likely to be identical than two independent genes, i.e. Q3:k −
π2

k > 0. In the present case one could consider a slightly different parameterization of the
model, so that this positive component would appear as a variance (e.g. Cockerham and
Weir, 1987), but more generally this would be confusing because we may also have to
consider negative terms, as shown below for diploid data.

The table also shows that the sample averages of (Xj :k − πk)(Xj ′:k − πk) and (Xj :k −
πk)

2 are Q̂:k + π2
k − 2πkπ̃k and π̂k + π2

k − 2πkπ̃k , respectively. Here π̃k is the average
allele frequency among all pairs of genes for which the average is written. This is
the observed allele frequency by gene counting (denoted π̂k or π̂i:k) when all pairs
in the total sample or in sample i are considered. Among all pairs of genes sampled
without replacement within each sample, this is π̂w:k ≡ ∑

i ni(ni − 1)π̂i:k/(S2 − S1).
Among all pairs of genes from two different samples, π̂ has value π̂b:k given by
(S2

1 − S2)π̂b:k + (S2 − S1)π̂w:k = (S2
1 − S1)π̂ .

Then

∑
i

nj∑
j

(Xij :k − πk)
2 = S1(X..:k + π2

k − 2πkX..:k). (28A.11)

Next

(X..:k − πk)
2 =

(∑
i,j Xij :k − πk

S1

)2

(28A.12)

= 1

S2
1

(∑
i,j

(Xij :k − πk)
2
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+
∑

i 	=i′,j,j ′
(Xi′j ′:k − πk)(Xi′j ′:k − πk)

+
∑

i,j 	=j ′
(Xij :k − πk)(Xij ′:k − πk)

)
(28A.13)

= 1

S2
1

(
S1(π̂ + π2

k − 2π̂πk) + (S2
1 − S2)(Q̂3:k + π2

k − 2π̂b:kπk)

+ (S2 − S1)(Q̂2:k + π2
k − 2π̂w:kπk)

)
(28A.14)

= (π̂ + π2
k − 2π̂πk) + 1

S2
1

(
(S2

1 − S2)(Q̂3:k − π̂) + (S2 − S1)(Q̂2:k − π̂)
)

,

(28A.15)

by definition of π̂b:k . Likewise

(Xi.:k − πk)
2 =

(∑ni

j=1 Xij :k − πk

ni

)2

(28A.16)

= 1

n2
i


 ni∑

j=1

(
Xij :k − πk

)2 +
∑
j 	=j ′

(
Xij :k − πk

) (
Xij ′:k − πk

)
 (28A.17)

= 1

n2
i

(
ni(π̂i:k + π2

k − 2π̂i:kπk) + ni(ni − 1)(Q̂i2:k + π2
k − 2π̂i:kπk)

)
(28A.18)

= (π̂i:k + π2
k − 2π̂i:kπk) + ni − 1

ni

(Q̂i2:k − π̂i:k), (28A.19)

hence

ns∑
i=1

ni(Xi.:k − πk)
2 = S1(π̂k + π2

k − 2π̂kπk) +
∑

i

(ni − 1)(Q̂i2:k − π̂i:k).(28A.20)

Then from (28A.5), (28A.11) and (28A.20)

SSw = (S1 − ns)(π̂k − Q̂2:k), (28A.21)

and from (28A.6), (28A.15) and (28A.20)

SSb =
∑

i

(π̂i:k − π̂k) +
∑

i

(ni − 1)Q̂i2:k − (S1 − S2/S1)Q̂3:k − (S2/S1 − 1)Q̂2:k.

(28A.22)

Note that as in (28A.20), allele frequencies terms do not reduce to a function of π̂ only:
the term

∑
i(π̂i:k − π̂) will usually be nonzero when sample sizes are unequal. Taking
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expectations, one has

E
[
SSw

] = (S1 − ns)(πk − Q2:k),

E
[
SSb

] = (S1 − S2/S1)(Q2:k − Q3:k) + (ns − 1)(πk − Q2:k)

= (S1 − S2/S1)(σ
2
a − E[αiαi′] + E[εij εij ′]) + (ns − 1)(σ 2

e − E[εij εij ′ ]).

(28A.23)

These relationships hold whatever the model considered (fixed or random, etc.). They
are formally equivalent to a standard analysis of variance (e.g. Searle, 1971) on the
indicator variables Xij :k , except that (1) E[εij εij ′ ] and E[αiαi′] are not assumed null, and
(2) the sums of squares are themselves summed over alleles. When we write these two

modifications as ‘
1→’ and ‘

2→’ the equivalence of expectations in the standard formulas
of analysis of variance with expressions in terms of probabilities of identity is as follows:

σ 2
a

1→ σ 2
a − E[αiαi′ ] + E[εij εij ′ ]

2→Q2 − Q3 ≡ (1 − Q3)FST

σ 2
e

1→ σ 2
e − E[εij εij ′]

2→ 1 − Q2 = (1 − Q3)(1 − FST). (28A.24)

Hence the ‘intraclass covariance’ σ 2
a /(σ 2

a + σ 2
e ), often taken as a definition of FST, should

be interpreted as

FST = σ 2
a

σ 2
a + σ 2

e

1→ FST = σ 2
a + E[εij εij ′ ] − E[αiαi′ ]

σ 2
a + σ 2

e − E[αiαi′ ]
, (28A.25)

where the latter expression may be considered more general.
For diploid data, the model is Xijl:k = µ + αi + βij + εij l for gene l (l = 1, 2 for

diploids) of individual j in population i. With σ 2
a ≡ E[α2

i ], σ 2
b ≡ E[β2

ij ], σ 2
e ≡ E[ε2

ij l],
we have

σ 2
a

1→ σ 2
a − E[αiαi′ ] + E[βijβij ′]

2→ Q2 − Q3 ≡ (1 − Q3)FST

σ 2
b

1→ σ 2
b − E[βijβij ′ ] + E[εij lεij l′ ]

2→ Q1 − Q2 ≡ (1 − Q3)FIS(1 − FST)

σ 2
e

1→ σ 2
e − E[εij lεij l′ ]

2→ 1 − Q1 = (1 − Q3)(1 − FIS)(1 − FST),

(28A.26)

where Q1 is the probability of identity of genes within a diploid individual, Q2 is for
genes between individuals within subpopulations, and Q3 between subpopulations. Thus
in both formalisms we see that the ‘components of variance’ actually translate into more
general expressions that can be negative. When there is an heterozygote excess within
demes (Q1 < Q2), E[εij lεij l′ ] is negative, and σ 2

b − E[βijβij ′ ] + E[εij lεij l′ ] is negative.
In the haploid case, (28A.23) implies that

(S1 − ns)E[SSb] − (ns − 1)E[SSw]

(S1 − ns)E[SSb] + (Wc − 1)(ns − 1)E[SSw]
= Q2 − Q3

1 − Q3
, (28A.27)

where SSw and SSb are now summed over alleles (e.g. SSw ≡ ∑ns
∑ni

∑
k(Xij :k −

Xi.:k)
2), and Wc ≡ (S1 − S2/S1)/(ns − 1). Although we have related the expectation of the
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different terms to ‘components of variance’ in a model such as (28A.1), we note again that
the last equality holds independently of such a model, because it is only based on the basic
relationship (28A.2). Accordingly, an estimator of FST is the ratio of unbiased estimators

(S1 − ns)SSb − (ns − 1)SSw

(S1 − ns)SSb + (Wc − 1)(ns − 1)SSw
. (28A.28)

(see also Weir, 1996, p. 182). One could hope that this estimator is directly interpretable
as (Q̂2 − Q̂3)/(1 − Q̂3), where Q̂j = ∑

k Q̂j :k are the frequencies of identical pairs of
genes in the sample, computed by simple counting either within (for Q2) or between (for
Q3) samples (Q̂2 being is an average over the different samples, weighted according to the
number of pairs in each sample). But this is not so when sample sizes are unequal, because
the term

∑
i (π̂i:k − π̂) from (28A.22) remains in the above expression. The expression

closest to (Q̂2 − Q̂3)/(1 − Q̂3) that I have found for Weir and Cockerham’s estimator is

Q̃2 − Q̂3

1 − Q̂3 + ∑
i (ni − 1)(Q̂i2 − Q̂2)

S2−S1

(S2
1−S2)(S1−ns)

, (28A.29)

in terms of the weighted frequency

Q̃2 = (S1 − 1)
∑

i (ni − 1)Q̂i2 − (S1 − ns)(S2/S1 − 1)Q̂2

(S1 − ns)(S1 − S2/S1)
, (28A.30)

and where Q̂i2 is the observed frequency of pairs of genes identical in state among all
pairs taken without replacement within sample i. Compared to the analysis-of-variance
estimator, the simple strategy of estimating any function of probabilities of identities by
the equivalent function of frequencies of identical pairs of genes is equally ‘unbiased’,
has no obvious drawback and is easily adaptable to different settings.

For multilocus data it is usual to compute the estimator as a sum of locus-specific
numerators over a sum of locus-specific denominators; see e.g. Weir and Cockerham
(1984) or Weir (1996) for details. Note that the sums are weighted differently in these
two references. The numerator in Weir and Cockerham (1984), eqs. (2) and (10), is n̄/Wc

times the one in Weir (1996), p.178–179. Parallel changes in the denominator ensure that
the one-locus estimators are identical, but the multilocus estimators will be different if
n̄/Wc varies between loci.

APPENDIX B: LIKELIHOOD ANALYSIS OF THE ISLAND MODEL

Sampling Formulas

Consider an infinite island model of haploid subpopulations where there are K alleles and
ns subpopulations are sampled. The following notation will be used: πk is the frequency of
allele k in the total population (which is not a random variable here) and pki is frequency
of allele k in subpopulation i; nki is the number of genes of type k in the sample from
subpopulation i; ni is the size of sample i, n is the average ni , π̃k ≡ ∑

i nki/
∑

i ni and
p̃ki ≡ nki/ni are the observed frequencies of allele k in the total sample and in sample i,
respectively.
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The distribution of the pkis in population i follows a Dirichlet distribution,

L(pki, . . . , pKi) = �(M)
∏
k

p
Mπk−1
ki

�(Mπk)
. (28B.1)

This type of distribution arises as a diffusion approximation to the discrete generation
Wright–Fisher model, where M is twice the number of migrant genes per generation
(Wright, 1949), e.g. 2Nm or 4Nm, and more generally in any scenario that can be
approximated by the n-coalescent.

It should be noted that this equation is valid for each subpopulation with its own size,
Ni , and its own immigration rate, mi . Thus the likelihood of samples may be given for
an infinite island model only characterized by the homogeneous dispersal of individuals
to other demes: the Nis and mis need not be identical in all subpopulations. This result
implies that, with a large number of subpopulations, one can only estimate the products
Nimi for each deme.

Consider the vector of counts nki of allele k in subpopulation i, ni ≡ (n1i , · · · , nKi),
and the corresponding multinomial coefficient C(ni ) ≡ ni!/

∏K
k=1 nki!. The conditional

probability distribution of the ith sample, given the subpopulation frequencies pi ≡
(p1i , . . . , pKi), is multinomial:

C(ni )

K∏
k

p
nki

ki . (28B.2)

The probability distribution of a sample ni in subpopulation i must be expressed as a
function only of the parameters, M and of expected allele frequencies (expectations under
stochastic model) π ≡ (π1, . . . , πK), by combining (28B.1) and (28B.2) and summing
over the set S of possible values of allele frequencies pi :

L(M, π; n1i , . . . , nKi) =
∫

· · ·
S

∫
�(M)

K∏
k

p
Mπk−1
ki

�(Mπk)
C(ni )

K∏
k

p
nki

ki dpi (28B.3)

= �(M)

�(M + ni)
C(ni )

K∏
k

�(Mπk + nki)

�(Mπk)
. (28B.4)

This distribution is the Dirichlet-multinomial distribution. In the infinite island model,
subpopulation frequencies are independent from each other in each subpopulation, so that
the likelihood of a total sample from ns subpopulations is

L(M, π) =
(

�(M)

�(M + ni)

)ns ns∏
i=1

C(ni )

K∏
k

�(Mπk + nki)

�(Mπk)
. (28B.5)

The pseudo–maximum likelihood estimator M̂A of M had been previously defined by
Chuang and Cox (1985) as the solution of ∂ ln L/∂M|π=π̃,M=M̂A

= 0. From (28B.5), this
is the solution of

0 =
[

K∑
k

ns∑
i

π̃k

(
nki−1∑
k=0

1

π̃kM + k

)
−

ns∑
i

(
ni−1∑
k=0

1

M + k

)]
. (28B.6)
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Efficiency in the Island Model

When M → ∞ (high migration rates) the Dirichlet-multinomial distribution converges
to a multinomial with parameter π, so the sampling distribution for the total sample
is a product of multinomials with the same parameter π: this corresponds to the case
of no population differentiation. Thus we can construct asymptotically efficient statistics
for detecting weak differentiation from a study of the properties of the likelihood when
M → ∞. To that aim it is simpler to express it as a function of ψ ≡ 1/M and compute
the Taylor expansion near ψ = 0. From (28B.6), it may be shown that

∂ ln L

∂ψ
=

K∑
k

ns∑
i

nki(nki − 1)

2πk

−
ns∑
i

ni(ni − 1)

2
+ O(ψ), (28B.7)

and a statistic of interest (effectively a score statistic, Cox and Hinkley, 1974, Chapter 9)
may be constructed as

Ũ ≡ lim
ψ→0

∂ ln L

∂ψ

∣∣∣∣
π=π̃

=
K∑
k

ns∑
i

nki(nki − 1)

2π̃k

−
ns∑
i

ni(ni − 1)

2
, (28B.8)

where the π̃s are the observed allele frequencies in the total sample, which are the MLEs
of the πs in the case ψ = 0. This result draws a connection between the likelihood and
the moment methods (see also Balding, 2003). Since the second sum in (28B.8) is fixed
for given sample sizes ni , the score statistic is essentially a sum of squares and can be
considered in an analysis of variance framework. It shows that asymptotically efficient
weights wk of the sum of squares for the different alleles are proportional to 1/π̃k , and
the weights of the sum of squares for the different samples are proportional to n2

i for
the different samples, i.e. wi = ni for each individual in (28A.3). The allele weighting
is not new: it is implicit in the matrix formulations of Smouse and Williams (1982) and
Long (1986) (see Weir and Cockerham, 1984; Chakraborty, 1992) and in standard test
statistics such as the χ2 or log-likelihood for multinomial models. Consistent with the
above analysis assuming weak differentiation (ψ → 0), it leads to estimators with efficient
properties only for low differentiation (Raufaste and Bonhomme, 2000). By contrast the
sample size weighting is odd and has not been previously considered in analysis of
variance. But it may bring very little (F.R., unpublished data): the allele weighting is
generally sufficient to turn moment statistics into efficient statistics when differentiation
is low.

Weighting according to observed allele frequencies or to other measures of genetic
diversity may have some drawbacks, particularly when one considers more general models
than the island model. This weighting seems to imply that the ratio of expected sum of
squares, conditional on genetic diversity, is independent of the value of the conditioning
variable. As noted in the main Text, this is approximately so in the island model, and
more generally under a separation of timescales when the slow process is an n-coalescent,
but may not hold more generally. Then, the only consistent method would be to sum the
Q̂ terms directly in the numerator and denominator; any other method would introduce a
bias. Further, selection of markers with specific levels of variability–as is often the case
in practice–could also introduce an ascertainment bias.



Please note that the keywords will not be included in the printed book, but are
required for the online presentation of this book which will be published on Wiley
InterScience (www.interscience.wiley.com). If the keywords are not present below,
please take this opportunity to add them now.

The keywords should be not less than 10 words.

KEYWORDS: dispersal, coalescence, likelihood, analysis of variance, F -statistics,
island model, isolation-by-distance, effective population parameters




