
Migraine version 0.6
for Linux/Windows/MacOs

Long documentation
October 1, 2020

0.02
0.025

0.03
0.035

0.04
0.045

0.05
0.055

4×1046×1048×1041051.2×1051.4×1051.6×1051.8×105

−1948

−1946

−1944

−1942

−1940

−1938

2N
µ

Nb (ind.m)

ln(L)

−1950

−1948

−1946

−1944

−1942

−1940

−1938

Migraine code © F. Rousset, R. Leblois 2004–now, with contributions
by C.R.Beeravolu and C. Merle.

This documentation © F. Rousset, R. Leblois 2007–now, with contribu-
tions by C.R.Beeravolu.

1

Introduction

The Migraine program allows likelihood analyses of genetic data, with a
focus on the inference of dispersal for spatially structured populations and
historical events for isolated panmictic populations. It is mainly designed for
allelic type data sets, but short non-recombining DNA sequence data analyses
can be also analyzed under some demographic models. Moreover, analyses
combining different type of markers, e.g. microsatellites and DNA sequences,
are also allowed. The demographic models currently implemented in this pro-
gram are (1) simple models of isolation by distance (IBD) in linear and two-
dimensional habitats, as described in (Rousset & Leblois, 2007, 2012), which
includes the finite island and stepping stone models as a special cases; (2) a
single population model (OnePop); (3) a single population model with a single
continuous past variation in population size (OnePopVarSize), as described
in (Leblois et al., 2014). This model can be used to infer parameters under
scenarios of past contraction or expansion in population size; (3) a single
population model with two past variation in population size (the first is dis-
crete followed forward in time by a continuous one) (OnePopFounderFlush),
as described in (Rousset et al., 2018). This model can typically be used
for scenarios with a founder event followed by an expansion (that gave its
name to the model), often observed in invasion or epidemiolocal processes, or
for any other combination with two past changes in size; (5) an n-population
model with a constant (in time) migration matrix is also implemented (Npop)
but has only been tested in its simplest configuration with two populations
as described in de Iorio et al. (2005) (2pop). Currently, a K-alleles mutation
model is implemented for all demographic models and two stepwise mutation
models (SMM and GSM) are implemented to some extent for models with one
or two populations (i.e. OnePop, OnePopVarSize, OnePopFounderFlush, for
both models, and 2pop for the SMM only).

To estimate model parameters, Migraine infers likelihood. Point esti-
mates, confidence intervals and likelihood ratio tests are then computed from
the likelihood surface. A practical problem for applying these well-known
methods to population genetic inferences is that the likelihood itself has to
be estimated by simulation. In Migraine this is accomplished by the class
of importance sampling algorithms defined by de Iorio & Griffiths (2004a,b)
and de Iorio et al. (2005). Alternatively, approximations known as PAC-
likelihood (Product of Approximate Conditional likelihoods, Li & Stephens,
2003) can be used. Cornuet & Beaumont’s (2007) version of PAC-likelihood,
which is based on quantities inherent to the importance sampling algorithms,
is implemented in Migraine. Finally, we also implemented a resampling pro-
cedure in the importance sampling algorithm, based on the work of Liu et al.

2

(2001) and Liu (2008). For the moment, this resampling procedure is only
implemented for the OnePopVarSize model under a SMM mutation model in
Migraine. It is described in detail and tested in Merle et al. (2017).

Migraine is designed to interact with the R software for data analysis (R
Core Team, 2013). R is free software available for all major operating systems.
This documentation assumes no previous knowledge of R. All analyses can
be performed, and decent graphics can be produced, without any knowledge
of the R language. However, to see how this can be done, it is essential to
install R and to perform the session examples.

There are two versions of this documentation. The short version first de-
scribes the installation steps and two worked examples (under the LinearIBD
and OnePopVarSize models), for a quick start. This is followed by a minimal
description of the methods used; a description of the statistical models imple-
mented and of their specificities (e.g., the neighborhood parameter for isola-
tion by distance models), followed by a summary of the canonical parameter
order for each model; a similar description of data input; and a systematic
description of the most important settings. Finally, additional worked ex-
amples are shown. The long version provides additional information on all
the above topics, including some troubleshooting advice, and instructions for
running multiple Migraine processes. You are reading the long version.

Here is the more formal Table of contents:

1 Quick start 6
1.1 Requirements . 6
1.2 Installation . 7

1.2.1 Migraine . 7
1.2.2 The R statistical software 7

1.3 Using Migraine . 8
1.3.1 Minimal example for isolation by distance 8
1.3.2 Minimal example for the OnePopVarSize model 10
1.3.3 Going further into the results of those minimal worked

examples . 11
1.3.4 The settings file and the command line 14

1.4 Output and file system . 16
1.5 Iterative analyses . 17

2 Likelihood estimation using Migraine: background 18
2.1 Confidence regions based on (profile) likelihood ratios 18

3

2.2 Accuracy of estimation of likelihood in each parameter point . 19
2.3 Accuracy of likelihood surface prediction 20

2.3.1 Number and location of points 20
2.3.2 Reliability of the smoothing (kriging) step 21
2.3.3 Parameter spaces and extrapolation 22

2.4 Local maxima of the fitted likelihood surface 23
2.5 Hints for good results . 24
2.6 Troubleshooting . 24

2.6.1 Likelihood computations do not start 25
2.6.2 Lost input files . 25
2.6.3 R code complains about suspect replicate values in the

input file . 25
2.6.4 Likelihood surface is not smooth 25
2.6.5 Negative likelihood ratio statistic 26
2.6.6 R does not have enough memory 26
2.6.7 The results file warns that an estimate is at the edge

of the parameter space 26

3 Mutation models 27
3.1 K-alleles model . 27
3.2 Strict stepwise mutation model (SMM) 27
3.3 Generalized stepwise mutation model (GSM) 28
3.4 Infinite Sites mutation model (ISM) 28

4 Demographic models 28
4.1 Isolation by distance with geometric dispersal 29

4.1.1 Hints for good results 32
4.2 Nearest-neighbor stepping stone dispersal 32
4.3 Island model . 32
4.4 Panmictic population at equilibrium 32

4.4.1 Hints for good results 32
4.5 Panmictic population with variable size 33

4.5.1 Hints for good results 34
4.6 2 populations with migration 35

4.6.1 Hints for good results 36

5 Canonical order of parameters 36

6 Data input 37
6.1 Input file format . 37

6.1.1 Genepop . 37

4

6.1.2 NEXUS . 37
6.2 Spatial information (isolation by distance) 39

6.2.1 Preferred method . 39
6.2.2 Other methods (linear habitat only) 40

6.3 The graphic output for the different models 42
6.3.1 Isolation by distance 42
6.3.2 Single panmictic population 43
6.3.3 Population with variable size:

OnePopVarSize and OnePopFounderFlush 44
6.3.4 2 populations with migration 44

7 Migraine settings 44
7.1 General features of settings 48

7.1.1 The settings file . 48
7.1.2 The command line . 48
7.1.3 Order of settings . 48
7.1.4 The Iterations and Boolean syntaxes 49
7.1.5 The locus vector syntax for analyses with multiple mark-

ers . 50
7.2 Settings by theme . 50

7.2.1 Data input . 50
7.2.2 Spatial information . 51
7.2.3 Demographic models 52
7.2.4 Mutation models . 53
7.2.5 Control of iterative computations 56
7.2.6 Control of sampled points 58
7.2.7 Control of likelihood estimation 61
7.2.8 Options for likelihood ratio tests and one-dimensional

confidence intervals . 64
7.2.9 Control of kriging . 68
7.2.10 Interaction with the system 70

8 Multiple data sets and multiple Migraine runs 70
8.1 Multiple and concurrent runs of Migraine 70
8.2 Cluster usage: several processes writing in the same directory 71
8.3 Linux PC cluster . 71

8.3.1 Migraine command line argument 71
8.3.2 Passing environment variables 72

8.4 Parallel computation of point batches with a bash script on
Linux computers and clusters 73

8.5 Parallel computation of profiles in R on any PC 73

5

8.6 The output_n.txt file . 73
8.6.1 General format . 73
8.6.2 Return code is not 0 75

9 More examples 76
9.1 Linear habitat: choosing a parameter space 76
9.2 OnePopVarSize and OnePopFounderFlush: choosing the good

number of runs per points . 80
9.3 More examples . 84

10 Credits (code, grants, etc.) 84

11 Copyright 85

12 Kriging 86
12.1 What is kriging? . 86
12.2 Surface prediction . 87

12.2.1 The linear predictors 88
12.3 Covariances functions and covariance parameters 89

12.3.1 Covariance families . 89
12.3.2 The spatial scale parameters 89
12.3.3 Minimizing the prediction error 89

Bibliography 92

Index 95

1 Quick start

1.1 Requirements

Migraine should run on most reasonably recent operating systems with a
C++ compiler and a R software installed.

Migraine has limited memory needs. However, memory issues can be-
come a problem when running the R code, and access to 64-bit processors
with large amounts of RAM may be handy in that case.

If you plan to run several concurrent Migraine processes in the same
directory, then read section 8.

6

1.2 Installation

1.2.1 Migraine

Windows users can run the executable Migraine.exe.
For Linux users, compile the sources by either

g++ -O3 -o migraine *.cpp

or by

g++ -DNO_MODULES -o migraine latin.cpp -O3

(the second compilation command will generate a smaller executable file).
This should work on most Unix-based systems, including Mac OS X. If you
use the clang compiler, then you may need the -std option as in

g++ -DNO_MODULES -std=c++11 -o migraine latin.cpp -O3

1.2.2 The R statistical software

A recent version of R must be installed, including some packages available
from the CRAN websites, in particular the blackbox package. This is quite
straightforward if you are familiar with R installation issues. If not, the
following may help you.

All R sources and documentation can be found on the CRAN website.
blackbox is a standard R package available on CRAN, so to install it some-
thing as simple as

install.packages("blackbox")

may suffice. For Windows, this will install precompiled binaries for the pack-
age, and other required R packages will be automatically installed. Under
linux, you may need to help yourself a bit more. In particular, installation
of the rcdd package requires the gmplib (GNU Multiple Precision) library.
If it is not already installed, try something like apt-get install libgmp3-

dev if you have set an adequate repository, or else follow the instructions on
www.gmplib.org.

The run time of the R code may be substantially reduced if you compile
the sources with the the -O3 compiler option for compiler optimisation in g++

or clang. Unfortunately, this is not the default setting in most R installation
we have used. You can change this locally by creating a file containing the line
CXXFLAGS= -O3 which must be appropriately named and put in the appropri-
ate directory (this is in principle explained in the R admin documentation).

7

http://www.cran.r-project.org
http://www.gmplib.org

For Windows (64 bit version) one can put them in the Makevars.site file in
the \etc\x64 subdirectory of the current R installation. Under Linux, this
should be in ~/.R/Makevars. Then you need to install the package from
source, not from binaries, by using

install.packages("blackbox",type="source")

On Windows, installing this from source means that (1) you may need to
read the documentation for install.packages (particularly its dependen-

cies argument); (2) you need to have installed the Rtools first, which in
now pretty straightforward (Download and run the installer from here and
follow instructions). Then you can compile the blackbox library as any other
package from CRAN: launch R, and run the above command line. Do not use
the R GUI menu command to install the package. Check that the installation
succeeds (it should terminate with the message DONE (blackbox). If it fails,
check that you have correctly installed the Rtools by trying to install another
package that requires compilation, e.g.
install.packages("lpSolveAPI",type="source")

1.3 Using Migraine

We first present two minimal worked examples of inference, one for isola-
tion by distance, one for a single past change in population size of a single
population (i.e., OnePopVarSize model).

1.3.1 Minimal example for isolation by distance

In this example, Migraine will analyze the data from a damselfly population
(Watts et al., 2007). Likelihoods will be computed for the three parameters
of a simple model of linear isolation by distance.

Copy the provided migraine.txt and the sample file IVCP (that can be
found in the folder firstSession/IBD_IVCP/) into an empty folder. Make
the migraine executable accessible from this folder by whatever mean suit-
able for your operating system. Launch the executable (simply by entering its
name on the command line). Wait for completion of the computation. The
likelihood computation should last only a few seconds. The most important
files it generates are pointls_1.txt and migraine_1.R.

The R analysis will take a few minutes, unless it fails if R and its additional
packages were not properly installed. In the latter case, it may be helpful to
call R directly, using the command line (R --vanilla < migraine_1.R),1

1To call R through the command line on Windows, you may need to have set up the R

8

https://cran.r-project.org/bin/windows/Rtools/

or the R graphical user interface (GUI) for Windows, or Rstudio. Rstudio
is most convenient in several ways, but its own graphic device has several
weaknesses.

If everything goes well, several output files will be produced. The main
results are saved in the results_1.txt file, which looks like:

__

Migraine 0.5 (Built on Sep 2 2016 at 11:16:56)

blackbox, version 1.0.12 loaded

R code run on Thu Sep 08 19:01:52 2016

Data file: IVCP

Settings file: migraine.txt

Geographic bin width= 692.006

Demographic model: IBD 1D

Canonical parameters: 2Nmu 2Nm g

* N stands for number of gene copies,

i.e. 2N = 4 x [the number of diploid individuals] *

(!) Few points in upper 11.91 [ln(L) units] range:

only 320 points in this range.

(!) Only 15 points have a predicted likelihood

in the upper 1.921 [ln(L) units] range.

(this threshold corresponds to the 0.05 chi-square threshold with 1 df);

It is advised to compute more points in order to obtain good CIs.

Some high profile likelihoods are extrapolated in the 2Nmu, Nb profile

*** Confidence intervals ***

95%-coverage confidence interval for 2Nmu : [0.363 -- 0.643]

95%-coverage confidence interval for 2Nm : [45.47 -- 123.4]

95%-coverage confidence interval for g : [0.301 -- 0.997]

95%-coverage confidence interval for Nb : [167792 -- 8087569688]

*** Point estimates ***

default path. If you want to call R in this way (or from within Migraine under Windows
without specifying a RtermFullPath value), you need to add the Rterm.exe path to the
Windows Path variable. If this was not set at installation, then Right-click on the My
Computer icon; Choose Properties from the context menu; Click the Advanced tab; Click
the Environment Variables button; Add the target directory to the end of the Path using
a semi-colon as a separator, i.e. something like ;C:\Program Files\R\R-3.2.0\bin.

You will find a lot more information about R installation on www.cran.r-project.org.

9

www.cran.r-project.org

2Nmu 2Nm g

0.481 68.96 0.802

Neighborhood: 2190463 ind.m

Normal ending.

__

1.3.2 Minimal example for the OnePopVarSize model

In this second example, Migraine will analyze the data from a Soay sheep
population, kindly provided by J. Pemberton and analyzed with Migraine in
Rousset et al. (2018). Likelihoods will be computed for the three parameters
of the OnePopVarSize model: a panmictic isolated population with a single
past change in size, for which we fixed the pGSM parameter value to allow
faster analyses with only three parameters.

Copy the provided migraine.txt and the sample file Soay.txt (that
can be found in the folder firstSession/OPVS_Soay/) into an empty folder.
Make the migraine executable accessible from this folder by whatever mean
suitable for your operating system. Launch the executable (simply by enter-
ing its name on the command line). Wait for completion of the computation.
The likelihood computation should last a few minuts. The most important
files it generates are pointls_1.txt and migraine_1.R.

Then the R analysis, which should automatically be launched by the Mi-

graine executable, will also take a few minutes, unless it fails if R and its
additional packages were not properly installed. In the latter case, it may be
helpful to call R directly, using the command line (R --vanilla < migraine_1.R for
Linux and MacOs; to call R through the command line on Windows, see the
footnote 1 from the previous section) or the R graphical user interface (GUI)
for Windows, or Rstudio. Rstudio is most convenient in several ways, but its
own graphic device has several weaknesses.

If everything goes well, several output files will be produced by the R
analysis. The main results are saved in the results_1.txt file, which looks
like:

__

Migraine 0.5 (Built on Feb 21 2017 at 18:05:04)

blackbox, version 1.0.18 loaded

R code run on Thu Mar 30 15:13:15 2017

Data file: Soay.txt

Settings file: migraine.txt

10

Demographic model: OnePopVarSize

Canonical parameters: pGSM 2Nmu Tg/2N Dg/2N 2Nancmu

* N stands for number of gene copies,

i.e. 2N = 4 x [the number of diploid individuals] *

(!) Few points in upper 33.02 [ln(L) units] range:

only 387 points in this range.

(!) Only 57 points have a predicted likelihood

in the upper 1.921 [ln(L) units] range.

(this threshold corresponds to the 0.05 chi-square threshold with 1 df);

It is advised to compute more points in order to obtain good CIs.

*** Confidence intervals ***

95%-coverage confidence interval for 2Nmu : [0.158 -- 0.551]

95%-coverage confidence interval for Dg/2N : [0.248 -- 0.94]

95%-coverage confidence interval for 2Nancmu : [3.424 -- 15.86]

95%-coverage confidence interval for Nratio : [0.0206 -- 0.0956]

95%-coverage confidence interval for Dg*mu : [0.0475 -- 0.444]

*** Point estimates ***

pGSM 2Nmu Tg/2N Dg/2N 2Nancmu

0.5 0.327 0 0.56 7.465

N ratio: 0.0438

Dg*mu: 0.183

Normal ending.__

1.3.3 Going further into the results of those minimal worked examples

For both minimal examples described above, further information is reported
in several ways (detailed later). When using the R GUI, beware that several
graphic windows will be produced on top of each other: you need to move
each window to see the previous one.

R should produce several plots in the Rplots_1.eps file, some of which
are shown in Fig. 1 and 2. The following types of plots are produced:

� Raw one-dimensional projections of the cloud of points for each pa-
rameter (first plot in Fig. 1 and 2). These plots are not very important

11

0.0

0.2

0.4

0.6

0.8

1.0

 0.001

 0.01

 0.05

 0.1

 0.2

 0.3

 0.4 0.5
 0.7

+

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

100

150

200

Profile likelihood ratio

2Nµ

2N
m

−760 −750 −740 −730

−
76

0
−

75
0

−
74

0
−

73
0

Predicted values

E
st

im
at

es

 R^2 = 99.38%

0.2 0.4 0.6 0.8

−
76

0
−

73
0

2Nµ

ln
(L

)

0.2 0.4 0.6 0.8

−
76

0
−

73
0

50 100 150 200 250

−
76

0
−

73
0

2Nm

ln
(L

)

50 100 150 200 250

−
76

0
−

73
0

0.0 0.2 0.4 0.6 0.8 1.0

−
76

0
−

73
0

g

ln
(L

)

0.0 0.2 0.4 0.6 0.8 1.0

−
76

0
−

73
0

−745

−740

−735

−730

−725

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

100

150

200

+
 −745

 −
74

5

 −745 −
74

0
 −740

 −740

 −735

 −730

 −725

g = 0.779

2Nµ

2N
m

Figure 1: Four types of plots produced by Migraine under the linearIBD

model.
These are parts of the graphic output from analysis of example file IVCP as
described in the text.

12

0.
05

0.
10

0.
20

0.
50

1.
00

2Nµ on a log scale

Li
ke

lih
oo

d
ra

tio

●

0.001 0.003 0.01 0.03 0.1 0.3 1 3

0.95

0.99 0.
05

0.
10

0.
20

0.
50

1.
00

Dg 2N on a log scale

Li
ke

lih
oo

d
ra

tio

●

0.05 0.1 0.2 0.5 1 2

0.95

0.99

0.
05

0.
10

0.
20

0.
50

1.
00

2Nancµ on a log scale

Li
ke

lih
oo

d
ra

tio

●

1 2 5 10 20 50 100

0.95

0.99 0.
02

0.
05

0.
20

0.
50

N − ratio on a log scale

Li
ke

lih
oo

d
ra

tio

●

10−5 10−4 0.001 0.01 0.1 1 10

0.95

0.99

One−parameter likelihood ratio profiles

0.001 0.005 0.010 0.050 0.100 0.500 1.000

−6
60

−6
20

2Nµ on a log scale

ln
(L
)

● ●

●

●

●●
●

●
●●●●●

●
●

●

●

●

●

●

●
●●

●
●●
●
●●

●
●

● ●●
●
●●

●

●
●
●

●

●

●
●
●●●●●

●●

●
●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●●
●
●

●
●

●

●

●
●

●●●
●●●●

●

●
●
●

●●
●●
●
●

●
●●
●

●

●
●

●

●●●●
●
●

●
●

●

●

●
●

●
●
●

●●●●
●
●
●
●●

●
●●
●
●●
●

●
●
●

●

●
●

●

●
●
●

●

●
●
●

●

●●

●
●

●

●●●
●

●

●
●
●●

●
●

●

●

●

●

●
●●●
●●

●
●●
●●
●

●

●

●

●
●
●●●

●

●●

●

●
●

●
●

●

●●

●

●
●
●

●

●

●
●

●●

●
●
●●

●●
●●●

●
●●

●●●

●●

●

●
●
●
●●
●●

●
●
●●●

●

●

0.05 0.10 0.20 0.50 1.00 2.00

−6
60

−6
20

Dg 2N on a log scale

ln
(L
)

● ●

●

●

●●●
●

●●
●● ●

●
●

●

●

●

●

●

●
●●

●
●●

●
●●

●
●

●● ●
●

●●
●

●
●

●

●

●

●
●
●● ●● ●

● ●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●
●●

●

●

●

●●
●

●

●
●

●

●

●
●

●●●
● ● ●●

●

●
●

●

●●
● ●

●
●

●
●●

●

●

●
●

●

●● ● ●
●

●

●
●

●

●

●
●

●
●

●

● ●● ●
●

●
●

● ●

●
● ●

●
● ●

●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●●
●

●

●

●
●

● ●

●
●

●

●

●

●

●
●●● ●●

●
● ●

●●
●

●

●

●

●
●

●● ●

●

● ●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●

● ●

●
●

● ●

●●
●● ●

●
●●

● ●●

●●

●

●
●

●
● ●

●●

●
●

●●
●
●

●

1 2 5 10 20 50

−6
60

−6
20

2Nancµ on a log scale

ln
(L
)

●●

●

●

●●●
●

●●
●● ●

●
●

●

●

●

●

●

●
● ●

●
● ●

●
●●

●
●

●●●
●

● ●
●

●
●

●

●

●

●
●
●● ●● ●

● ●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●●
●

●

●
●

●

●

●
●

●●●
● ● ●●

●

●
●

●

●●
●●

●
●

●
●●

●

●

●
●

●

●●● ●
●

●

●
●

●

●

●
●

●
●

●

●●● ●
●

●
●

● ●

●
●●

●
● ●

●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●●
●

●

●

●
●

●●

●
●

●

●

●

●

●
●● ● ●●

●
● ●

●●
●

●

●

●

●
●

●● ●

●

● ●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●

● ●

●
●

● ●

●●
●●●

●
●●

● ●●

●●

●

●
●

●
● ●

● ●

●
●

● ●
●

●

●

0.0

0.2

0.4

0.6

0.8

 0.
00

1

 0.
01

 0.05

 0.1

 0
.2

 0

.3

 0
.4

 0.6

+

0.003 0.01 0.03 0.1 0.3 1

2

5

10

20

50

Profile likelihood ratio

2Nµ on a log scale

2N
an

cµ
 o

n
a

lo
g

sc
al

e

Figure 2: Four types of plots produced by Migraine under the OnePopVar-

Size model.
These are parts of the graphic output from analysis of the minimal Soay
sheep example, after the second iteration (see Section 1.5), as described in
the text.

13

unless something goes wrong.2 Nevertheless, they allow a quick exam-
ination of the results, in comparison to the next plots which are slower
to produce;

� contour plots of the likelihood surface, where one parameter estimate
has been fixed to its maximum likelihood value (hence, slice in the
three-dimensional parameter space; second plot in Fig. 1). These can
also be shown as perspective (or “3D”) plots, although the latter are
better suited to make a showy image (see the cover page of this docu-
mentation) than to carry a clear message;

� 2D profile likelihood regions for pairs of parameters (third plot in Fig. 1
and second plot in Fig. 2);

� 1D likelihood profiles for each canonical parameter and for some com-
posite parameters of the model (third plot in Fig. 2 for the OnepopVarSize
example; not produced in the first LinearIBD example). These may be
produced at two steps: before and after the computation of the 2D
profiles. 1D profiles computed after 2D profiles take advantage of the
computation of the latter to circumvent problems with local maxima
in maximization steps. Therefore, these 1D profiles are more reliable
and should be retained.

� an “observed vs. predicted” diagnostic plot which should look like
an ideal regression line with 1:1 slope, and Gaussian-distributed er-
ror (fourth plot in Fig. 1 and 2). As explained later, the likelihood
surface is inferred by a smoothing operation on the likelihood points
first computed by Migraine. In general the surface should not pass
through the points and this plots show the difference.

These two examples only serve as a quick introduction to Migraine, and
some the results may be far from perfect. See Section 6.3 for more explanation
of the graphics, and Sections 4 and 9 for more examples and hints for good
results for the different demographic models.

1.3.4 The settings file and the command line

At this point, it is worth having a look at the migraine.txt file. For the
first example under the LinearIBD model, it should look like:

2These diagnostic plots are a bit messy, as two different scales may be shown on the same
frame. The traditional lower/left scales spans all points, shown in grey, the upper/right
scale spans points selected for kriging, shown in black; points selected for generalized
cross-validation are circled in red.

14

DemographicModel=LinearIBD

statistic=PAC

PointNumber=512

Nrunsperpoint=5

GeoUnit= ind.m

GenepopFileName=IVCP

GeoDistanceBins=5

onedimCI=twoNmu,twoNm,g,Nb

writeSequence=Over

LowerBound=0.16,25,0.

Upperbound=0.96,250,0.999

for the second iteration:

#WriteSequence=ReadPoints,Append

and for the second example under the OnepopVarSize model, it should
look like:

DemographicModel=OnePopVarSize

Statistic=PACanc

WriteSequence=Over

PointNumber=300

NRunsPerPoint=20

GenepopFileName=Soay.txt

MutationalModel=GSM

GivenK=50

StepSizes=2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

GridSteps=15

Plots=Allprofiles

1DCI=2Nmu,Dchange,2Nancmu,Nratio,Dgmu

LowerBound=0.5,0.001,0.0,0.1,1

UpperBound=0.5,2.0,0.0,2.0,80.0

SamplingScale=,logscale,,logscale,logscale

For the second iteration, uncomment next line

#writesequence=ReadPoints,Append

The significance of these settings, and many more, will be explained in
the next sections.

However, we should insist on two very important points for analysis un-
der time-inhomogeneous models such as the OnePopVarSize model : (1)
the user should be cautious about any population structure detected in his
data set because inferences under those time-in-homogeneous models are very

15

sensitive to population structure. Only the absence of any population struc-
ture allows to pool samples from different geographical places (Leblois et al.,
2014); (2) inferences under those models are also very sensitive to mutational
processes (see Leblois et al., 2014). The StepSizes keyword in the above
settings corresponds to the size of the microsatellite motive for each locus
(i.e. 2 for di-nucleotides, 3 for tri-nucleotides, 4 for tetra-nuceoltides, etc). If
this StepSizes setting is absent, Migraine will compute the smallest com-
patible size for each locus but may fail (i.e. found a motive size of 1) if some
mutations do not strictly follow a stepwise model. It is thus very important
to check that all allelle sizes at each locus is compatible with a stepwise model
of mutation with a fixed motive lentgh (i.e. all allele size differences have to
be a multiple of its motive size). If some allele sizes are incompatible with the
motive length, then the user should check the chromatograms to verify if the
size of the allele was correctly inferred, and possibly remove all occurences
of this allele form the data set (i.e. set it to missing data 000).

The various options of Migraine can be controlled at runtime through
the command line or through a settings file (Note that Migraine can also be
run from MiGUIne, the Migraine graphical interface, see specific documen-
tation). The default values are set at compilation; they may be overridden
by the settings file, which options can in turn be overridden by command
line options. Some information about the final settings is saved in the file
settings.out.txt. The options available through the command line are
those available through the settings file, plus one: an optional name for the
settings file:

CmdLineFileName

This sets the name of the file where command-line options are written. This
should be given as the first argument on the command line itself. This
setting must be used when concurrent processes write in the same directory,
in which case it is useful to launch the different processes with different
CmdLineFileName values (see section 8.3.1).

1.4 Output and file system

Here is a quick reference list of files read and written during Migraine usage.
Some additional files are not described here as one should not edit them
in normal use. The two main output files, as shown in the “Quick start”
example, are the results_n.txt and Rplots_n.eps files. Other notable
output files are

� pointls_n.txt: this is where likelihood values are written for all
points, and is read by R;

16

http://kimura.univ-montp2.fr/$\sim $rousset/migraine03/MiGUIne.pdf
http://kimura.univ-montp2.fr/$\sim $rousset/migraine03/GUIgraine.zip
http://kimura.univ-montp2.fr/$\sim $rousset/migraine03/GUIgraine.zip

� pointls_n.old.txt: A preexisting pointls_n.txt is saved under this
name when a new one is created;

� migraine_n.R: written by Migraine and read by R, this file contains
R code to be executed;

� R_out_n.txt file: R log file, which stores the verbose and sometimes
obscure output that goes to the screen in an interactive R session;

� nextpoints_n.txt file: more on this one in Section 1.5;

� nextpoints_n.old.txt file: a pre-existing nextpoints_n.txt file is
saved under this name just after being read by Migraine.

� output_n.txt file: this contains roughly the same information as the
results_n.txt file, but in a more computer-friendly, and less user-
friendly, form.

The only input files are the data file, and the settings file (default name:
migraine.txt).

1.5 Iterative analyses

To continue on either the LinearIBD or the OnePpoVarSize minimal example,
edit the migraine.txt file with a text editor, uncomment the line

WriteSequence=ReadPoints,Append

save the settings file and rerun Migraine as in the previous example (or al-
ternatively, run the command line migraine WriteSequence=ReadPoints,Append).
Migraine will read the parameter points in the file nextpoints_1.txt, esti-
mate their likelihood, add the results to the previous pointls_1.txt, and R

will again be called for all further steps. If this fails, then perhaps you need
to set the R path as explained in footnote 1.

This example shows that it is easy to perform iterative analyses. Here
nextpoints_1.txt contained points with a predicted high likelihood. A new
nextpoints_1.txt is written at each iteration, so that starting with a few
points in a wide parameter space, one can gradually narrow the exploration
of the parameter space to better explore the high-likelihood region (see Sec-
tion 7.1.4 for more details about those iterative analyses and the associated
syntaxe to be used in the settings file).

17

2 Likelihood estimation using Migraine: background

This Section describes some methods used by Migraine in a non-technical
way so that one can quickly use the program efficiently.

In Migraine the likelihood is estimated by simulation. Further, a like-
lihood surface is estimated (or “predicted”) from the estimated points. The
quality of these estimations will depend on various numerical settings, briefly
introduced in this Section and more systematically described in later ones.
Detailed descriptions of algorithms and of their properties, as well as of gen-
eral statistical background, are beyond the scope of this documentation.
However, we first recall some basic properties of likelihood ratio-based in-
tervals and of the slightly less familiar profile-based intervals, which are the
main basis for inference in Migraine. For a sound introduction to likelihood
methods in general, see Cox & Hinkley (1974) or Cox (2006). For importance
sampling algorithms used by Migraine, see de Iorio & Griffiths (2004a,b).

2.1 Confidence regions based on (profile) likelihood ratios

Confidence intervals/regions can be constructed from the likelihood ratio: a
p-parameter point θ is included in the confidence interval if twice the loga-
rithm of the ratio L(θ)/L(θ̂), where θ̂ is the maximum-likelihood estimate,
is above a given bound. This bound is given by the chi-square distribution
with p degrees of freedom.

If the dimension of the parameter space is > 2, it is difficult to rep-
resent the confidence regions. Further, interest may be a in a composite
parameter such as neighborhood (Nb) in the IBD models or for the ratio of
present to past population size under the OnePopVarSize model, as well as
for all other population size ratios under the OnePopFounderFlush model.
For these time-inhomogeneous models, scaling the time by the mutation rate
(e.g. Dg ∗mu = Din generations ∗ µ) instead of scaling by population size (i.e.
D = Din generations/2Ncurrent) may also be interesting, and Migraine now com-
putes their point estimates and 1D profiles by default as extra-parameters
(2Dprofiles and condifence intervals are not computed by default but using
the keywords oneDimCI and 2Dprofiles, see p. 65 and 67). However, the
user can also choose to consider them as canonical parameters of the model
using the keyword TimeScale=MutationRate (see p.52).

In these cases, profile confidence intervals/regions may be computed (Cox
& Hinkley, 1974, p. 322; Cox, 2006). For example, the profile likelihood for
Nb is the maximum value of the likelihood over all values of 2Nm, g which
yield a given Nb. More generally, the profile likelihood for some parameter
value(s) ψ is the maximum value of the likelihood consistent with the given

18

ψ, i.e. the likelihood maximized over the parameters that are not part of
ψ (the other parameters are thus not fixed to their maximum-likelihood
estimates). p-values of the profile likelihood ratio tests are computed by the
chi-square method, in the same way as generic likelihood confidence intervals.
The number of degrees of freedom (df) is the dimension of ψ. For example,
a two-dimensional confidence region for (2Nµ,Nb) is deduced by comparing
the profile likelihood ratio (actually, twice its logarithm, i.e. 2{ln[L(θ̂)] −
ln[L(θ)]}) to the χ2 distribution with 2 df, while a confidence interval for
Nb is deduced by comparing the same value to the χ2 distribution with 1
df. A practical downside is that the profile likelihood computations may
be slow as they require many maximizations steps. For three parameters,
computing all one- and two-dimensional profiles may take a few minutes to a
few hours, when the number of grid values for each parameter varies from 10
to 25 (as controlled by e.g. GridSteps=10). With four parameters, the one-
dimensional profiles alone may take several hours. When profile likelihood
computations are slow, the user can choose specific parameters, or pairs of
parameters, for which 1D and/or 2D profiles will be computed using the
1Dprofiles and 2Dprofiles settings.

Since version 0.5.2, profile computations can be parallelize in R using the
keyword CoreNbrForR (see 8.5).

2.2 Accuracy of estimation of likelihood in each parameter

point

Accuracy of estimation of likelihood in each parameter point depends on the
number of replications of the estimation algorithm3. This number is given
by the NrunsPerPoint setting. For all time-homogeneous models currently
implemented (e.g. without past demographic changes, IBD, OnePop, 2Pop),
a remarkably low value of 5 often appears enough to get a good estimation
of the likelihood surface, and more than 100 does not appear useful (Rousset
& Leblois, 2007, 2012). A value around 30 is generally a good choice. It is
nevertheless advised to increase those values to get final estimates. For time-
inhomogeneous models (i.e. OnePopVarSize, OnePopFounderFlush), the im-
portance sampling distribution can be much less efficient. For those models,
preliminary analyses can be run with a value of 200 and a value of 2,000
iterations will give reliable results for most demographic situations. However
values of 20,000, or even 200,000 are sometimes necessary for strong dise-
quilibrium situations, see Section 9.2. On the other hand, values of 200-500

3the number of independent genealogies constructed by the importance sampling algo-
rithm for strict likelihood, and the number of ancestral sequences for PAC-likelihood

19

are generally sufficient for weak disequilibrium scenarios. For demographic
situation with potential strong and recent past change in population sizes, it
is advised to check whether increasing the number of replicates by a factor 5
or 10 changes the results of the analyses (point estimates and CI, as well as
the diagnostic plot of the kriging showing the variance in the estimation of
the likelihood, see such examples in Section 9.2).

Analyses with stepwise models (SMM and GSM to a lesser extent) and for
the ISM also implies less efficient IS algorithms than for the KAM/PIM, and the
number of runs per point should also be increased when using these mutation
models (see section 9 for various examples).

2.3 Accuracy of likelihood surface prediction

To find the maximum likelihood estimates and confidence intervals, smooth-
ing is used to predict the value of the likelihood in any point. The accuracy
of the results will depend on the number and location of points sampled, and
on the quality of the smoothing procedure.

2.3.1 Number and location of points

Migraine estimates likelihood in a given number of parameter points (con-
trolled by the PointNumber setting), each point being a set of values for all
canonical model parameters (i.e., for IBD: 2Nµ, 2Nm, g). Migraine has
several options for exploring the parameter space, but in the first run it sim-
ply divides the range for each parameter in a given number of cells, and
samples one point uniformly within each multi-parameter cell created in this
way.4 The initial parameter ranges are specified by the user through the
LowerBound and UpperBound settings (as shown in the “first session” exam-
ple). Uniform sampling may be performed on a log-transformed scale (or
not) independently for each parameter, by using the samplingScale setting
(detailed later).

As the damselfly example has shown, an iterative process allows one to
refine the sampling of points. Interest is in the likelihood surface around
its maximum, and points should be more densely sampled in this area.
To that effect, the recommended settings are at least two iterations (e.g.,

4This was confusingly called Latin hypercube sampling in de Iorio et al. (2005) and
Rousset & Leblois (2007), although it may be seen as a practical approximation to “max-
imin” Latin hypercube sampling. Given that replicate estimates of likelihood are taken
for some points, the present design may also be seen as a practical approximation to a
roughly uniform distribution of tight clusters, which is useful for addressing the different
needs of covariance estimation and prediction (Zimmerman, 2006).

20

writeSequence=Over,Append to perform the two iterations in a single run)
and using points generated by R for the second iteration. The iterative pro-
cedure is illustrated in Rousset et al. (2018).

Improvements in the generation of the next points imply that it is better
to perform more iterations with fewer points than in previous versions of
Migraine. For example, 9 iterations with 200 points, instead of 3 iterations
with 600 points as previously suggested, give much better results.

Under the OnePopVarSize model with a GSM (4 parameters), reliable re-
sults are generally obtained with 8 to 10 iterations and 200 points. For the
OnePopFounderFlush model with a GSM with fixed parameter (also 4 param-
eters), we used 8 iterations with 400 points for the analysis of the Soay sheep
data set presented in Rousset et al. (2018). Some analyses of real data sets
under the OnePopFounderFlush model with a variable pGSM (5 parameters)
required 10 to 15 iterations with 400 to 800 points to get enough points
near the maximum of the likelihood surface (unpublished results). For these
time-inhomogeneous models (i.e. with past changes in population size), more
iterations (e.g. 12 to 16) may be required if the past change in population
size is not clearly marked on the likelihood surfaces (i.e. likelihood surface
not peaked) and/or if the initial parameter range specified by the user does
not include the high likelihood zone of the parameter space.

Fewer total points are necessary in models where the likelihood is easier to
estimate and/or with fewer parameters. In particular, in models of isolation
by distance, 4 iterations of only 250 points each are generally sufficient to
obtain results with biologically relevant accuracy. To ascertain the decimals
and obtain nicer plots, it may be worth doubling the number of iterations.

2.3.2 Reliability of the smoothing (kriging) step

The method known as kriging is here used to compute a prediction of the
unknown likelihood surface from the likelihood estimates in some parameter
points (see Section 12 for additional explanations). It is unwise to try to
predict (extrapolate) the likelihood surface outside of the “kriged” parame-
ter range, and in Migraine this is avoided in general: the maximum of the
likelihood surface is sought only in the kriged range, the profile likelihood
values too, and the plots clearly distinguish the kriged range. In Migraine

the range is taken as the so-called convex hull of the kriged points (the mini-
mal convex set containing all points, which one can visualize as a polyhedron
with the most exterior points at its vertices).

Kriging depends on several smoothing parameters, which are estimated
by Migraine. Ideally, the whole procedure used to infer the likelihood surface
would work perfectly, so that users do not have to care about it. This is nearly

21

so. In particular, the confidence intervals derived from the likelihood surface
perform as expected in the simulation conditions described by Rousset &
Leblois (2012); Leblois et al. (2014).

Nevertheless, users should check the screen output for two possible issues,
namely (i) the messages warning that there may be too few points for some
of the operations, in which case the obvious action is to compute more points
by running an additional iteration; (ii) an estimated “smoothness” parameter
lower than 4. The latter is really a problem only insofar it results in non-
smooth likelihood surface, visible from the plots, and in poor prediction of
the observed likelihood, visible from the diagnostic plot at the end of the
Rplots file. In this case, see Section 2.6.

Estimation of the smoothing parameters is based on so-called generalized
cross-validation (GCV). This may generate “GCV...” screen warnings during
execution of R code, which can generally be ignored.

2.3.3 Parameter spaces and extrapolation

For IBD analyses, one can choose to infer the likelihood surface for the set
of parameters (2Nµ,Nb, g), involving the neighborhood size Nb, rather than
(2Nµ, 2Nm, g). However, if 2Nm and g were sampled uniformly, there may
be wide gaps in the sampling of Nb values. Prediction of the likelihood sur-
face for poorly sampled regions within the convex hull may be poor. Hence
the prediction from kriging is good if sampling of points was roughly uni-
form on the scale used for kriging. For this reason, the parameter space for
kriging (which is controlled by the KrigSpace setting) is by default the pa-
rameter space used to define uniform sampling of points (which is controlled
by SamplingSpace).

This means that to make inferences about a composite parameter such as
Nb, one should either sample uniformly Nb, then use it as a kriging variable,
or should sample uniformly Nm, use it as a kriging variable, and use the
resulting predictor to compute the Nb likelihood profile. The downside of
the first option is that additional points must be sampled uniformly on a
2Nm scale if inferences are also made about 2Nm. The downside of the
second option is that it may lead to wrong extrapolation of the likelihood
surface.

As noted above, profile likelihood methods provide a way of making infer-
ences about composite parameters, such as the neighborhood size Nb viewed
as a function of (2Nm, g) dispersal parameters. But we also noted that pre-
diction of likelihood values are safely made only within a set of points (convex
hull) defined in the parameter space used for kriging, and this raises difficul-
ties in computing profile maxima for parameters that are not part of the defi-

22

nition of this space. For example, the convex hull of points in (2Nµ, 2Nm, g)
coordinates is not the same as that of the same points in (2Nµ,Nb, g) coordi-
nates. As a result, the maximum likelihood within the (2Nµ, 2Nm, g) hull is
not necessarily the same as within the (2Nµ,Nb, g) hull. On the other hand,
only a convex hull in given coordinates [say (2Nµ,Nb, g)] is a convenient set
to explore in order to compute the profile for one of the coordinates, such as
Nb. Therefore, when the tested parameter is not in the kriging space [here,
Nb when kriging is in (2Nm, g) space], a convex envelope is recomputed in a
composite space (2Nµ,Nb, g) and all profile likelihoods are computed within
this composite hull. But the resulting maximizing coordinates may not be in
the original kriging space, and then the likelihood prediction is not reliable.
In particular, when a high likelihood ratio is predicted in such points, this
calls for extending the kriged range, hence the set of points for which like-
lihoods have been estimated, to such regions (the iterative procedure does
this more or less automatically).

Profile plots if Migraine show both shading and contour line information.
As in the “slice” surface plots, the contour lines also display extrapolation
results while the shading represent only results within the convex hull used
for kriging. In the profile plots, one can remove the dubious extrapolations
by using the option Plots=Cautious.

2.4 Local maxima of the fitted likelihood surface

It may be that the ML value identified at some step is only a local maximum.
This could be apparent in a likelihood surface plot. The profile CI compu-
tations are efficient in catching this problem and should be run whenever
possible. A biologically reasonable case for having multiple peaks (mostly
differing in the value of the mutation rate) is when different markers have
different mutation rates. However, if your likelihood surface looks multi-
peaked, it is likely that kriging failed due to any combination of the following
problems (which hopefully should not occur in normal use): (i) the distribu-
tion of the error in estimation of likelihood is far from Gaussian, this being
due to too low NrunsPerPoint. Check the “regression” diagnostic plot at the
end of the Rplots_n.file to detect this problem; (ii) Overfitting of observed
likelihoods, this being due to poor estimation of smoothing parameters GCV.
In particular, look in the results_n.txt file for messages about either too
few points being retained in the cross-validation step, or a low estimate of
the smoothness parameter. If you have enough points but a low smoothness,
you can use the FixedSmoothness=4 option to overcome this issue. But
this is a brutal solution and it is advised to have an independent way of
checking the results (e.g., replicating the full Migraine analysis with a differ-

23

ent samplingSeed) (iii) Numerical issues relative to the inversion of nearly
singular covariance matrices. Try decreasing the setting designRetain=x
(0 < x ≤ 1) below its default value x = 1. If everything fails, it may be
worth contacting us.

2.5 Hints for good results

For all models, it is unwise to mix likelihood estimates with different NRunsPerPoint.
It is even more unwise to mix PAC-likelihood and true likelihood estimates.
Therefore, writeSequence=...,Over,... should be used to overwrite pre-
vious results whenever the NRunsPerPoint or the statistic are changed in a
computation sequence, e.g. as in

writeSequence=Over,Over,Append

NRunsPerPoint=10,30

StatisticSequence=PAC,IS

by which points from the third iteration are added to those from the second
one, all of them being true likelihoods estimates deduced from 30 replicates
of the IS algorithm, not mixed with the PAC-likelihood estimates from 10
replicates computed in the first iteration.

Further recommendations for specific models are given in the Sections
detailing each of them. In particular, minimal values of NRunsPerPoint for
reliable inferences. A simple way to evaluate the impact of numerical settings
on the accuracy of the final estimates is to run two independent analyses of
the data, differing only by the value of the ptSamplingSeed setting (which
controls which parameter points are randomly drawn for likelihood estima-
tion). Independent runs should also give similar confidence regions. If you
care about relative differences of a few percents, then consider adding one
iteration and increasing NRunsPerPoint by a factor of 3–10 relative to the
suggested values.

2.6 Troubleshooting

A wrong combination of options is a likely source of any problem. As most
softwares with many options, Migraine can be misused in many ways, and
all possible combinations of all options have not been tested. Moreover, some
options are available only as a one-time convenience rather than for normal
use. Follow the advice given in this documentation for safe use. Some causes
of trouble are considered in this Section.

24

2.6.1 Likelihood computations do not start

One possible cause is an uncaught error syntax in the settings file. Check
the first output lines on the screen, there are all messages about potential
mis-specifications in the settings file. Problems can also occur when input
files are transferred among different operating systems and/or edited with
software that do not abide to standards. In such cases, input files may have
wrong line/file terminators and you may have trouble locating the problem.
Migraine handles most such issues, but Microsoft products are always ahead
in messing up everything.

If there is no obvious syntax error in the settings file, add the InputCheck=T
setting at the beginning of the settings file and look at all the ugly screen
output for anything suspect.

2.6.2 Lost input files

This may occur when different Migraine processes simultaneously modify
the same input file. See Section 8.2.

2.6.3 R code complains about suspect replicate values in the input file

At least three estimates were found for the same parameters, or the same
likelihoods were found in two replicate computations for the same parame-
ters. Both issues could occur in normal (though not routine) use, but in our
experience it resulted from glitches in an experimental computer grid, result-
ing in the same computation being written several times in the output file,
not from issues with Migraine per se. You should either locate and correct
the problem in the input file, or use RArguments=AutomatedCleaning to let
the code do the cleaning, perhaps in a slightly inappropriate way. A cleaned
input file is then written, with extension .cln.txt.

2.6.4 Likelihood surface is not smooth

For plain (not profile) likelihood surfaces, this is likely the result of poor
kriging covariance parameters leading to ill-conditioned covariance matrices.
See section 2.4.

For profile likelihoods surface, there may be additional problems. The 2D
profile plots are obtained by maximizing the likelihood in GridSteps×GridSteps
points of the surface. But there is no single perfect algorithm for maximizing
a function, and failure to find the maximum in (say) 1% of the grid points
may be enough to compromise aesthetically the plot. The R code uses some
tricks to minimize such artefacts, successfully in our recent experience. But if

25

you are unlucky, the best we can advise is to play a bit with the GridSteps

setting (small changes may be sufficient) until something nice is obtained.
The statistical conclusions should not be affected, of course.

2.6.5 Negative likelihood ratio statistic

If the profile likelihood for the tested value is higher than the previously found
maximum of the likelihood surface, Migraine seeks a new maximum. In pre-
liminary versions this new search sometimes failed due to various numerical
issues (e.g. if the parameter tested is the neighborhood size, which can take
values arbitrarily larger than the tested value). Should this still occur, a
tentative fix is to compute estimates of the likelihood for some additional
points near the profile maximum.

2.6.6 R does not have enough memory

Short answer: the solution is to run a 64-bits Linux version of R.
Long answer: kriging requires large contiguous memory chunks for han-

dling a large number of points , and even if your computer has a large amount
of memory, no large enough chunk may be available, particularly on 32-bits
processors (see the R FAQ web pages for up to date information).

In practice, this has prevented kriging of more than ≈ 2500 points at once
on Windows-based or 32 bits computers. Hence, by default on such comput-
ers, larger output from Migraine is analyzed in smaller batches of points with
overlapping ranges and a global maximum is returned. This might still fail on
some computers. If so, you may use the options krigmax=n, kriglength=n,
and krigoverlap=n to control this process, given that batches of length
kriglength overlapping by krigoverlap points are considered when the
total size exceeds krigmax.

Default values are different under Unix-based systems, where we suc-
cessfully kriged 10000 points in one batch. Remind however that numerical
issues (ill-conditioned covariance matrices) easily come out with such large
data sets.

2.6.7 The results file warns that an estimate is at the edge of the param-
eter space

This means that some maximization operation was stopped at an edge of
the parameter space defined by the envelope of kriged points. The return
code reported in the output_n.txt file may contain more information about
this. If possible, you should compute more points in order to extend the
parameter space. But it may be that a genuine bound is reached (e.g. g = 0

26

or g = 1), in which case there is nothing to do, except rethink about the
expected distribution of likelihood ratio tests.

3 Mutation models

The following models are implemented:

3.1 K-alleles model

Currently the symmetric K-alleles mutation model is implemented for all
demographic models. Note that de Iorio & Griffiths (2004a,b) considered the
parent-independent mutation model (PIM) which is equivalent to the KAM

except that it allows“mutations” from one allelic type to itself. The mutation
rate values input and output by Migraine do not follow this convention;
rather, mutations are real changes as in the standard definition of the KAM.

3.2 Strict stepwise mutation model (SMM)

A strict stepwise mutation model (SMM), often used for microsatellite loci, is
implemented for all demographic models except IBD. Under this mutation
model, each allele is represented as the number of repeats or the size of the
allele in base pairs and each mutation removes or adds a single repeat to the
ancestral state. In Migraine, there is two ways to consider the SMM:

First, the recommended setting is to consider a SMM with a finite number of
states and circular boundaries, to approximate the unbounded SMM considered
in de Iorio et al. (2005). In this case, a large number of alleles (setting
givenK) should be considered to minimize boundary effects. The solution of
the bounded model is the same as for the unbounded one, except that the
integral in eq. 3.10 for c` must be replaced by the Fourier inversion formula
for a finite circular lattice, where the ` index is further interpreted modulo
K. We actually use the integral expression given in their eq. 3.10 as an
approximation for its finite lattice equivalent, so only the indexing is changed.
This is the default option when givenK≥ 200.

The second possibility is to consider a SMM with a small number of allelic
states and reflective boundaries. This is a special case of the GSM considered
in the next Section, and importance sampling computations are performed
as described there.

27

3.3 Generalized stepwise mutation model (GSM)

A generalized stepwise mutation model (GSM) is also implemented for the
OnePop, OnePopVarSize and OnePopFounderFlush demographic models. As
in the SMM, each allele is represented as the number of repeats or the size
of the allele in base pairs. Each mutation removes or adds X repeats to
the ancestral state, where X follows a geometric distribution with parameter
pGSM. Considering this mutation model adds a parameter in the analysis
of any demographic model. Migraine considers a GSM with a relatively small
number of alleles and reflective boundaries. Computations are performed as
described in the appendix of Leblois et al. (2014), default option, or using ma-
trix inversions as in Stephens & Donnelly (2000) which may be very slow for
time-inhomogeneous models like onePopVarSize or OnePopFounderFlush.

For both SMM and GSM, further settings givenK and SMMstepSizes al-
lows one to control the number of allelic states and the motif lengths for
the different loci. This is especially important for inferences under time-
inhomogeneous models such as the OnePopVarSize model (see p.16).

3.4 Infinite Sites mutation model (ISM)

For sequence data Migraine assumes an infinite sites mutation model (ISM,
Kimura, 1969). It is currently implemented for all demographic models ex-
cept IBD. Under this model every mutation in the coalescent tree gives rise
to a new segregating position (i.e. no back mutations). Migraine makes use
of the importance sampling equations for ISM given by de Iorio & Griffiths
(2004a,b) or the algorithm of Hobolth et al. (2008).

4 Demographic models

Migraine does not care whether data come from an haploid or diploid pop-
ulation (or even haplo-diploid) and therefore uses numbers of gene copies as
a common currency for all cases. Hence, in the following, N should always
be understood as is the number of gene copies per deme. For diploid popu-
lations, 2Nµ is thus an estimate of 4Ndµ, and 2Nm an estimate of 4Ndm,
where Nd is the number of diploid individuals per deme. In both parameters,
4Nd can still be understood as 2N , i.e. twice the number of gene copies at a
locus in a deme. As any introduction to coalescent theory makes clear, the
“2” here has nothing to do with diploidy but with the fact that the 2Nµ or
2Nm parameters describe relationship between pairs of gene lineages.

The following models are implemented:

28

4.1 Isolation by distance with geometric dispersal

In this model, Migraine returns estimates of three “canonical” parameters
2Nµ, 2Nm, and g which is a scale parameter of dispersal distance, as further
detailed below. It also reports estimates of the neighborhood “size” (2Nσ2

or 2Nπσ2 for linear and two-dimensional habitats, respectively). The key-
words linearIBD and planarIBD (see DemographicModel setting) are used
to perform distinct analyses in one and two dimensions.

The issue of spatial units for neighborhood size: Nb is the neighbor-
hood“size”parameter of IBD models. One- and two-dimensional habitats
differ in the scale of neighborhood: individuals×(spatial unit) in one di-
mension, individuals in two dimensions (Rousset, 1997). Hence, for linear
habitats, neighborhood size depends on the unit of spatial distance used.
This unit must be provided to the program in some way, as further de-
tailed in a later Box.

In one dimension, dispersal to signed distance k 6= 0 can be described as

m

2
(1− g)g|k−1|, (1)

for dispersal probability m and dispersal scale g. As explained below, how-
ever, this needs to be corrected in order to ensure that the total dispersal
rate 2Nm is as expected despite edge effects, and then it only matters that
dispersal probability is proportional to gk (the m factor per se plays no role
in the algorithm). For two-dimensional dispersal, the dispersal probability
is first constructed as the product of one-dimensional probabilities, and then
again corrected.

Dσ2 can be represented as Nmσ2
cond, where σ2

cond is the mean-square dis-
persal distance given that dispersal occurs. σ2

cond, is a function of gonly,
and can be estimated in the same conditions as g can: see the Appendix of
Rousset & Leblois (2012) for a discussion of the robustness of g vs. neigh-
borhood size estimation. Migraine can use the σ2

cond parametrization (see
samplingSpace=,,condS2 setting) but these should not be misinterpreted
as estimates of mean-square dispersal distances (σ2).

Corrections for edge effects are defined so that the user-declared dispersal
rate 2Nm is the maximum immigration rate over the different demes on the
lattice, and that the dispersal model characterized by (2Nm, g = 1) is the
island model with immigration rate 2Nm in all demes. This is achieved
by the following procedure (for another presentation, see the Appendix of
Rousset & Leblois, 2012).

29

First, the above terms are computed, e.g. for a 4-demes linear lattice with
m = 1/3 and g = 1/2 the following 4× 4 matrix is computed

(aij) ≡

0 1/12 1/24 1/48

1/12 0 1/12 1/24
1/24 1/12 0 1/12
1/48 1/24 1/12 0

 (2)

(actually, this matrix is not computed: only a matrix of g|k| terms is com-
puted, with the same final effect; we present here the equivalent but more
concrete computation).

The row sums are then computed (if the lattice was unbounded, the
row sums would be the dispersal probability m). The row sums are here
7/48, 5/24, 5/24, 7/48, the highest being 5/24. Then all matrix elements are
multiplied by 24/5, so that the highest row sum becomes exactly equal to 1.
The resulting matrix is

0 2/5 1/5 1/10
2/5 0 2/5 1/5
1/5 2/5 0 2/5
1/10 1/5 2/5 0

 . (3)

The difference between the two matrices increases with g approaching 1 and
for smaller lattices. Finally, the latter matrix is multiplied by 2Nm.

The product Nσ2 (hence the neighborhood size) is deduced from the
canonical parameters 2Nm and g in the form Nmσ2

cond where σ2
cond is the

mean square dispersal distance conditional on dispersal (computed in the
absence of edge effects). As

∞∑
0

x2gx =
g(1 + g)

(1− g)3
, (4)

we obtain in a linear habitat

Nσ2 = Nm
1 + g

(1− g)2
= Nmσ2

cond. (5)

The dispersal distribution can be specified by either 2Nm and g (from which
the neighborhood size is computed using the σ2

cond formula), by 2Nm and
neighborhood size (from which g is computed by inverting the σ2

cond formula),
or by 2Nm and σ2

cond.
Computations in two dimensions differ as follows.

30

Edge effects The correction for edge effect follows the same logic as in one-
dimensional habitats: the migration matrix is constructed so that the
2Nm parameter always describes the highest immigration rate among
the populations. Independent geometric terms are used in each dimen-
sion, so that the immigration probability in population p is of the form

Mp = Const.
∑

x,y 6=(0,0)

g|x|+|y| (6)

for some constant Const., and for all possible nonzero movements x, y
into p. All terms of the matrix are then multiplied by 2Nm/maxp(Mp)
(so that Const. has no effect on the final matrix; again, only the powers
of g matter in the end).

Two-dimensional m: m is the two-dimensional dispersal probability, not the
dispersal probability max of the one-dimensional distribution. The two
are related by m = (1− (1−max)

2) for independent dispersal in each
dimension in unbounded space, but not more generally.

Neighborhood size The neighborhood size, 2Dπσ2, is determined from the
variance of the axial dispersal distribution in unbounded space, σ2 =
max(1 + g)/(1− g)2). This can be expressed in terms of the parameters
of the algorithm from the unbounded-space relationships

2Nσ2 = 2N
max(1 + g)

(1− g)2
= 2Nm

max(1 + g)

m(1− g)2
= 2Nmσ2

cond (7)

where σ2
cond is the marginal one-dimensional variance given dispersal

occurred in at least one dimension. The coalescent algorithm considers
only scaled dispersal rates 2Nmx,y at distance (x, y), so that different
scenarios, with variable m and inversely related N are not distinguished
in this computation. For example, if axial dispersal at signed distance
k 6= 0 is

C

2
(1− g)g|k| (8)

for some constant C, then max = Cg. Given 2Nm and g values, the
program computes the 2Nmx,y values by setting C = 1. Given 2Nm,
the program also determines σ2

cond from given g (or reciprocally) by
setting C = 1. Any other value of C would lead to the same likelihood
values. E.g., halving C for given g and 2Nm would imply that N is
twofold higher, and all 2Nmx,y values would be unchanged.

31

4.1.1 Hints for good results

Minimal values for reliable inference under the IBD model are:

writeSequence=Over,Append <= at least two iterations

PointNumber=1000 <= the default value, 512, may be enough, but...

NRunsPerPoint=10

4.2 Nearest-neighbor stepping stone dispersal

The stepping stone model (in two dimensions, the canonical four-neighbors
model) is the limit case of the geometric dispersal model with g = 0. One
can constrain the analysis to this model by specifying the same 0 lower and
upper bounds to g through the LowerBound and UpperBound settings.

4.3 Island model

This is also a special case of the geometric dispersal model with g = 1, and
can be enforced also by specifying the same 1 lower and upper bounds to g.

4.4 Panmictic population at equilibrium

Samples can be analyzed under a model of a single panmictic population
at equilibrium (OnePop) with a single parameter θ = 2Nµ for haploid and
diploid data with N the number of genes of the population. Note that single
equilibrium population analyses can also be done under other models (cur-
rently IBD or 2pop). In that case the dispersal rate(s) should be fixed to
“0”, and the number of populations to 1. Otherwise Migraine will return
a likelihood surface valid with respect to relevant parameters and flat along
dimensions of other parameters. Data from a single population can also be
analyzed under a model of several populations, simply by specifying empty
data for the other populations, but in such cases, dispersal parameters should
affect the likelihood.

4.4.1 Hints for good results

For the OnePop model, the following minimal values will almost always give
reliable results because likelihood computations are very efficient and there
is a single parameter to infer:

writeSequence=Over <= a single iteration is sufficient

PointNumber=100

NRunsPerPoint=10 <= 1 run/point is sufficient for KAM

32

4.5 Panmictic population with variable size

Two models of a panmictic population with variable population size are
also implemented in Migraine to infer past changes in population size, their
strength, time of occurrence and possibly their duration.

First, the OnePopVarSize model consider a single past change in popu-
lation size. The change starts at some time T + D in the past and finishes
at some more recent time T . Because time is counted backwards, the more
recent time T is smaller than the starting time T +D. This model has three
or four parameters (not counting additional mutational parameters, e.g. for
the GSM) which are (1) the scaled current population size θcur = 2Ncurrentµ;
(2) the scaled time T = Tin generations/2Ncurrent at which the change in pop-
ulation size terminated; (3) the scaled duration D = Din generations/2Ncurrent

of the population size change. The current version of Migraine has only be
tested with parameter T set to 0 in Leblois et al. (2014), i.e. the change
continues until the time of sampling; (4) the ancestral scaled population size
θanc = 2Nancestralµ. Inference of the composite parameter Nratio, the ra-
tio of population size (Nratio = Ncurrent/Nancestral), is also implemented in
this model and may allow easier detection of past change in population size.
Last, inference of the composite parameters Tg ∗mu = Tin generations ∗ µ and
Dg ∗ mu = Din generations ∗ µ, which are times scaled by the mutation rate
instead of scaled by current population size, are also implemented and may
allow better interpretation of the timing of the events (more details below,
at the end of the subsection).

Two different changes in population size are implemented in Migraine for
the OnePopVarSize model and can be selected using the setting VarSizeFunction:
(i) a discrete change in population size occurring at T ; (ii) a continuous ex-
ponential change occurring between T +D and T .

Second, the OnePopFounderFlush model considers two past changes in
population size. Going forward in time, the first change is discrete/sudden
and is directly followed by a continuous change as described above for the
OnePopVarSize model. More precisely, at some time T + D in the past,
the population size change suddenly from the ancestral scaled population
size θanc = 2Nancestralµ to θfounder = 2Nfounderµ.That is the first sudden past
change. Then, the second continuous change, during which the size of the
population change from θfounder = 2Nfounderµ to θcur = 2Ncurrentµ, begins
(thus at T +D in the past) and lasts until a more recent time T . As for the
OnePopVarSize model, because time is counted backwards, the more recent
time T is smaller than the starting time T +D.

33

This model has four or five parameters (not counting additional muta-
tional parameters, e.g. for the GSM) which are (1) the scaled current popula-
tion size θcur = 2Ncurrentµ; (2) the scaled time T = Tin generations/2Ncurrent at
which the continuous change in population size terminated; (3) the scaled du-
ration D = Din generations/2Ncurrent of the continuous population size change.
Note that, as for the OnePopVarSize model, we have only considered T be-
ing null, i.e. the last change continues until the time of sampling; (4) the
founder scaled population size θfounder = 2Nfounderµ; and (5) the ancestral
scaled population size θanc = 2Nancestralµ.

Inference of three composite parameters are also implemented in this
model and may allow easier detection of past changes in population sizes: (1)
Nratio, the ratio of current population size over the ancestral one (Nratio =
Ncurrent/Nancestral); (2) NactNfounder-ratio, the ratio of current over founder
population sizes (NactNfounder-ratio = Ncurrent/Nfounder); (3) NfounderNanc-ratio,
the ratio of founder over ancestral population sizes (NfounderNanc-ratio =
Nfounder/Nancestral).

For easier interpretation of the timing of events and for comparison with
other programs, inference of the composite parameters Tg∗mu = Tin generations∗
µ instead of T , and equivalently Dg ∗ mu = Din generations ∗ µ instead of D,
is now implemented by defaults for point estimates and 1D profiles under
both models. The user can also use the TimeScale keyword to set them
as time parameters of the sampling space under both OnePopVarSize and
OnePopFounderFlush models (see p.52 for the keyword TimeScale).

As noted above, the OnePopVarSize and OnePopFounderFlush models
have only be tested with three parameters, by setting T = 0. It is thus
recommended to set T = 0, unless you really want to infer the parameter
T , in which case a simple simulation study may be necessary to evaluate
Migraine’s performances in such situation.

4.5.1 Hints for good results

For the OnePopVarSize model, and even more for the OnePopFounderFlush

model, it is more difficult to obtain fast, reliable results than in previous
models because the importance sampling algorithm is much less efficient for
time-inhomogeneous models, especially when the population size change is
strong and recent. It is thus advised to proceed in two steps and to check con-
sistency of the results over two different runs with different ptSamplingSeed
and different NrunsperPoint. For very recent demographic change, it is ad-
vised to consider more iterations (and thus more points in total) because

34

likelihood surfaces may not be clearly peaked, and may show cross-or funnel-
like shapes. It is also advised to compute more points and to consider more
iterations when using the GSM because it increases the number of parameters
by one. The following values should give reliable results unless demographic
is recent and/or strong (e.g. Nratio > 100, or < 0.01; and T < 0.25).

For OnePopVarSize with SMM:

writeSequence=Over,Append,Append,Append <= more iterations may give better results

PointNumber=500

NRunsPerPoint=2000 <= more runs per points may be

necessary when Nratio is > 100 or < 0.001

For OnePopVarSize with GSM:

writeSequence=Over,Append,Append,Append,Append,Append,Append,Append

PointNumber=500

NRunsPerPoint=2000 <= more runs per points

if Nratio is > 100 or < 0.001

For OnePopFounderFlush with GSM: A first run with a fixed pGSM value
deduced from preliminary analyses under the OnePopVarSize and GSM models
may be useful to restrict the explored parameter ranges. Then a run with
the estimation of pGSM and the following settings may give good results:

writeSequence=Over,Append,Append,Append,Append,Append,Append,

Append,Append,Append,Append,Append,Append,Append

PointNumber=500

NRunsPerPoint=2000 <= more runs per points

if Nratio is > 100 or < 0.001

4.6 2 populations with migration

Migraine can also consider a model of 2 populations exchanging migrants
(2pop). In this model, there are 2 sampled populations of size N1 and N2

exchanging migrants at rate m12 and m21 per generations respectively, where
e.g. m12 is the probability that an individual from population 1 had a parent
in population 2 (i.e. backward migration rates).

Considering N = N1 +N2, this model is defined in terms of 4 parameters
θ = 2Nµ, Q1 = N1/N , M1 = 2N1m12, M2 = 2N2m21, where population sizes
are expressed as the number of gene copies per population, and migration
rates are backward immigration rates. For diploid populations, the model
of 2-populations is still valid if migration is gametic. This model has been

35

tested in de Iorio et al. (2005) for a stepwise mutation model and to a lesser
extent in unpublished results for the KAM/PIM mutation model.

Inference of four composite parameters are also implemented in this model
and may allow easier interpretation of migration rates and easier test of asy-
metric migration patterns : (1) NMratio, the ratio of M1 over M2 allows to
detect and test asymetry in scaled migration rates (i.e. number migrants),
(NMratio = M1/M2 = N1 ∗ m12/N2 ∗ m21); (2) mratio, the ratio of m12

over m21 allows to detect and test asymetry in unscaled migration rates,
(mratio = m12/m21 = M1/M2 ∗ (1 − Q1)/Q1); (3) m1overmu, the ratio of
m12 over µ (m1overmu= m12/µ = M1/θ/Q1); and (4) m2overmu, the ratio of
m21 over µ (m2overmu= m21/µ = M2/θ/(1−Q1)).

For easier interpretation of the timing of events and for comparison with
other programs, inference of the composite parameters Tg∗mu = Tin generations∗
µ instead of T , and equivalently Dg ∗ mu = Din generations ∗ µ instead of D,
is now implemented by defaults for point estimates and 1D profiles under
both models. The user can also use the TimeScale keyword to set them
as time parameters of the sampling space under both OnePopVarSize and
OnePopFounderFlush models (see p.52 for the keyword TimeScale).

4.6.1 Hints for good results

For the 2Pop model with SMM mutations, the following values should give
reliable results unless migration rates or population sizes are small:

writeSequence=Over,Append,Append,Append,Append <= a third iteration may give better results

PointNumber=400

NRunsPerPoint=100

5 Canonical order of parameters

This section summarizes the canonical order of parameters in each model,
which is essential information for e.g. entering parameters ranges in the
correct order.

Isolation by distance: 2Nmu 2Nm g;

2Pop (PIM or SMM): 2Nmu N1/N 2N1m12 2N2m21.

OnePopVarSize pGSM 2Nmu T D 2Nancmu or only 2Nmu T D 2Nancmu if
a simple stepwise mutation model is assumed;

36

OnePopFounderFlush pGSM 2Nmu T D 2Nfoundermu 2Nancmu or only 2Nmu T D 2Nfoundermu 2Nancmu

if a simple stepwise mutation model is assumed;

Note that this order only concerns canonical parameters of each model.
Composite parameters (e.g. Nb, Nratio’s, Dgmu, Tgmu, NMratio, mratio,
m1overmu, m2overmu, etc) should either be (1) a substitute for a canonical
parameter (e.g. Nb), and then be in the same place (see 7.2.6), or (2) an ad-
ditionnal parameter (e.g. Nratio’s) and then only the order of the canonical
parameters is important.

6 Data input

6.1 Input file format

6.1.1 Genepop

Input files should follow the Genepop format (as defined in the latest version
of Genepop, Rousset, 2008; See the latest Genepop documentation). For
example:

example of input file for Migraine

loc1

loc2

pop

, 0101 0102

pop

, 0101 0102

where each line represents the genotype of one individual at different loci, and
groups of individuals (“samples” from different “populations”) are separated
by pop statements (see the Genepop documentation for further details).

6.1.2 NEXUS

Sequence data can also be analyzed by Migraine and should be specified
in the NEXUS format (more details on this format can be found here) and
a Genepop file (see below). Each NEXUS file contains information about a
single locus: either all unique haplotypes (i.e. no duplicate sequences) or
all sequences of each sequenced individuals. When conducting analyses with
multiple DNA sequence loci, a separate NEXUS file is thus required for each
locus (the format of the Nexus file name is detailled in section 7.2.1).

Below is an example of a NEXUS file generated by the IBDSim software.
Note however that this example contains an extra sequence with the label

37

http://kimura.univ-montp2.fr/~rousset/Genepop.pdf
http://wiki.christophchamp.com/index.php/NEXUS_file_format
http://raphael.leblois.free.fr/#softwares

Anc. As Migraine assumes an infinite sites mutation model, this extra se-
quence corresponds to the ancestral/reference sequence for the sample (i.e.
the MRCA). If the Anc sequence has not been specified by the user then
Migraine automatically constructs an ancestral sequence using the most fre-
quent allele at each nucleotide position. Note also that the ancestral sequence
is an extra sequence in the dataset and therefore needs to be taken into ac-
count by the ntax keyword which specifies the total number of sequences
contained in the NEXUS file.

#NEXUS

begin data;

dimensions ntax=9 nchar=12;

format datatype=dna symbols="ACTG";

matrix

Anc AGCTAGCTAGCT

001 AGGGAGCCACCT

002 AGCAAGATCGCT

003 AGGGAGCCACCC

004 AGCAAGATCGCA

005 AGAGAACCACCT

006 AGCAAGATCGGT

007 ACCAAGATCGCT

008 ATCGAGCTATCG

;

end;

It is important to note that Migraine also requires the genotype infor-
mation (specified in a Genepop format) associated with the sequence data
in the NEXUS file. This implies that the labels used in the NEXUS file need
to correspond to those in the provided Genepop file (see also 7.2.1). How-
ever, when the number of haplotypes is large and the data is only available
in the NEXUS format, it can be quite strenuous to manually create such a
Genepop file. In such case, the user can use the C++ source code provided
with the sources of Migraine, in the archive called sourcesNexus2GP, com-
pile it (simply with g++ -O3 -o Nexus2GP nexus.cpp Nexus2GP.cpp) and
run the binaries/executables which will automatically extract the sequence
information NEXUS files and create the Genepop files with the genotype infor-
mation.

38

6.2 Spatial information (isolation by distance)

6.2.1 Preferred method

The spatial coordinates of each sample can be given as a pair of coordinates
in the name field of the last individual of the given sample. Thus

Another example of input file for Migraine

loc1

loc2

pop

, 0101 0102

, 0101 0102

10 10, 0101 0102

pop

...

means that the first group is at position (10, 10) in space.
However, this does not say the relative position of samples in the array of

populations, which needs to be provided separately. Typically the position
of spatially extreme samples are not the limits of the habitat, and thus one
may need to specify the explicit shape of the habitat. This can be done using
the habitatPars setting, as follows

habitatPars=297 15 500 300 30

geoBinNbr=5

The habitatPars arguments are, respectively, the x and y coordinates of
a “lower left” corner of habitat, the dimensions ∆x and ∆y of a rectangu-
lar habitat, and a rotation angle α (in degrees) of this rectangle, as shown
in Figure 3. The samples taken in this habitat are then binned in square
bins covering the habitat. The largest dimension of the habitat is divided
by the given number of bins (here, geoBinNbr=5), and the number of bins
in the other dimension is deduced from this computation (hence, the total
number of bins is not GeoBinNbr; you might prefer to use the keyword Axi-

alBinNbr, with the same effect, to remember this). If one has data from a
grid (1, 1) . . . (nx, ny) of positions and wishes to match this in the analysis,
one should thus use

habitatPars=0.5 0.5 ∆x = nx ∆y = ny 0

AxialBinNbr=nx
where the corner coordinates (0.5,0.5) implies that subsamples will be

centered in the middle of each bin (and if you halve AxialBinNbr, bin limits
will match every other bin limit of the original AxialBinNbr specification).

39

+(x, y)

∆x ∆y

α

Figure 3: Meaning of habitat parameters
Six samples are distributed among fifteen bins, with two samples falling in
the same bin.

The same binning method should also be used for linear habitats when
coordinates are given in the Genepop input file. In that case one would
typically set ∆y (lower or) equal to ∆x/AxialBinNbr (but always > 0), so
that there is only one y bin. If there are more y bins, the y bin value will
be ignored, so that all samples are projected on the (rotated) x axis. In
this way an imperfect linear habitat can be analyzed as linear. Whether a
linear or two-dimensional model best applies to an elongated habitat depends
on sampling design relative to habitat shape (Rousset, 1997). On the other
hand Migraine will reject attempts to analyze an apparently linear habitat
(a single bin in the y axis) as two-dimensional.

One can check how the data are binned by using

writeAdHocFiles=T

This will write files (typically named re_dgn for the nth locus) as as table
where is column stands for a different allele, and each row gives the allele
counts for each bin, with rows being ordered as (1,1), (1,2),..., (x-bin
max,1),... ,(x-bin max,y-bin max).

6.2.2 Other methods (linear habitat only)

The habitat parameters can be deduced from settings alternative to habitat-

Pars. This can be convenient in particular is the island model is considered.

40

This case can be analyzed as a linear habitat where the dispersal scale pa-
rameter g is constrained to 1. The assumed number of demes can be specified
by the SamplesPosOnArray setting (see below).

There are different possibilities: (i) no additional information is given; (ii)
the number of populations is given and the position of samples on the array
are given; (iii) samples are binned into a number of“populations”representing
a given spatial range, the latter being either (1) deduced from number of bins
and geographic width of each bin, or (2) deduced from number of bins and
position of extreme points of the array. In all cases the data conversion can
be checked by using the writeAdHocFiles setting as described above.

The above alternatives work as follows.
(i) When no information is given through the settings, Migraine assumes

a linear lattice with one deme for each pop in the data, with the relative
order of samples as given in the data (samples coordinates in the Genepop

file are ignored).
(ii) The number of populations is given and the position of samples on

the array are given as follows

SamplesPosOnArray=9, 2,4,5

to mean that the array of populations is linear with 9 populations, and sam-
ples being taken on positions 2, 4 and 5 of the array. Samples coordinates in
the Genepop file are again ignored (indeed, any other geographic information
setting is ignored, even if it comes after SamplesPosOnArray).

One way to specify an island model with (say) 10 demes, three of which
were sampled, is therefore by

SamplesPosOnArray=10, 1,2,3

LowerBound=... ,... ,1

UppperBound=... ,... ,1

(iii) Other alternatives assume that the coordinates of samples are given
in the Genepop file.

With the setting GeoBinNbr=10, Migraine simply defines a linear habitat
of length 10/9 of the distance between the (min(x),min(y)) and (max(x),max(y))
positions in the sample, and bin samples in 10 bins of equal width. Thus,
the (min(x),min(y)) and (max(x),max(y)) points are in the middle of the
spatially extreme bins.

One can alter this behavior. (min(x),min(y)) and (max(x),max(y)) are
overridden by PSONMin and PSONMax, where “PSON” mean Populations Sam-
pled Or Not, and this awkward acronym is there to remind anyone that
extreme samples are not necessarily extreme populations. Thus with the
settings

41

GeoBinNbr=10

PSONMin=0 0

PSONMax=100 100

also illustrated in the sample session (see Section 1.3.4), Migraine will de-
fine a linear habitat of length 10/9 of the distance between positions (0, 0)
to (100, 100), and again bin samples in 10 bins of equal width. Thus, the
extreme positions given are in the middle of the spatially extreme bins. In
contrast to habitatPars, this has drawback of slightly altering the implied
habitat boundaries when GeoBinNbr is changed, although this should have
little impact on the results.

One can alternatively control the bin width. With the settings

GeoBinNbr=10

GeoBinWidth=10

Migraine will gather the samples in 10 bins, each of width 10 spatial units,
forming an array centered on the spatial range sampled. Thus if you have
samples in positions (10, 10), (20, 20) and (30, 30), Migraine computes the
maximum distance between two samples (here 20

√
2), and creates an array

of total length 100 units along the axes defined by the positions of these two
samples.

Remind that some information on these operations is reported in the
settings.out.txt file.

6.3 The graphic output for the different models

As described above, the R code produce various plots of the likelihood sur-
faces. The fast, default plots are grainy, as they represent grid of values
computed for a limited number of values in each dimension, but this can be
improved by increasing the value of the gridSteps setting, at the expense of
a longer computation time.

With a minimal knowledge of R one can also locate the code controlling
e.g. plot colors, and change it. We are interested to hear about the graphic
needs of the users, though we cannot guarantee rapid and useful feedback on
this matter.

6.3.1 Isolation by distance

Graphic output for this model were presented in Section 1.3.3.
“Slice plots” as shown in Fig. 1 (second plot) are computed for pairs of

parameters in the kriging space. If the kriging space includes 2Nm and g,

42

the (2Nm, g) “slice” contour plot will include a dotted line showing (2Nm, g)
values with the same neighborhood size as the maximum likelihood estimate,
as in the following plot from the damselfly example:

−745

−740

−735

−730

−725

50 100 150 200

0.2

0.4

0.6

0.8 +

 −750
 −745

 −740
 −735

 −735

 −730

 −730

 −725

2Nµ = 0.481

2Nm

g

The issue of spatial units for neighborhood size, continued: As pre-
viously emphasized, for linear habitats, neighborhood size depends on
the unit of spatial distance used. Migraine’s internal computations use
bin width (“lattice unit”) as the unit of distance, but the output (except
some screen messages) is in terms of the “user unit”, i.e. the unit of dis-
tance used for coordinates in the Genepop data file. The two differ by the
number of user units per lattice unit; this multiplication factor is stored
in the GeoBinWidth variable, which is reported is several output files,
most notably in results_n.txt.

As shown in the session example, users can explicitly declare the Nb

units shown in the plots as e.g. GeoUnit=ind.m (for individuals per meter,
if coordinates were in meters).

6.3.2 Single panmictic population

For the single population model, three plots are produced:

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

−
60

0
−

55
0

−
50

0
−

45
0

−
40

0

2Nµ on a log scale

ln
(L

)

3 4 5 6

−
41

0
−

40
8

−
40

6
−

40
4

3 4 5 6

−
41

0
−

40
8

−
40

6
−

40
4

2Nµ on a log scale

ln
(L

)

−410 −409 −408 −407 −406 −405 −404

−
41

0
−

40
8

−
40

6
−

40
4

Predicted values

E
st

im
at

es

First, a crude representation of the cloud of points, on two different scales
as explained in section 1.3.3 for IBD and OnePopVarSize models, showing all

43

points (in grey) on one scale, and on the other scale those selected for kriging
(in black) and those selected for cross-validation (circled in red). Second, the
likelihood curve for 2Nµ obtained by the kriging process. Third, the kriging
diagnostic plot as described in section 1.3.3 representing the “observed vs.
predicted” likelihood values for points selected for kriging.

6.3.3 Population with variable size:
OnePopVarSize and OnePopFounderFlush

Graphic outputs for this model are very similar to those described in sec-
tion 1.3.3 for the IBD and OnePopVarSize models, with the one-dimensional
projections of the points are presented in two plots, one for all the points,
the other for those selected for kriging and for cross-validation. There are
3 pairs of parameters under the SMM and 6 pairs under the GSM, hence 3 to
6 “slice” plots and 3 to 6 two-dimensional profile plots. Those figures are
similar to the one plotted for the 2pop model (Fig. 6). Some examples of
OnePopvarSize outputs are shown if Fig. 4.

For the OnepopFounderFlush model, there are 6 pairs of parameters un-
der the SMM and 10 pairs under the GSM, hence 6 to 10 “slice” plots and
two-dimensional profile plots. Under this model, it is highly time consuming
to compute all 1D and 2D profiles, and it is more appropriate to choose spe-
cific parameters, or pairs of parameters, for which 1D and/or 2D profiles will
be computed using the 1Dprofiles and 2Dprofiles settings. The figures
are similar to the one plotted for the OnePopVarSize model (Fig. 4). Some
examples of OnePopFounderFlush outputs are shown in Fig. 5.

6.3.4 2 populations with migration

Graphic output for this model are very similar to those described in sec-
tion 1.3.3 for the LinearIBD and OnePopVarSize models, with the one-
dimensional projections of the points are presented in two plots, one for all
the points, the other for those selected for kriging and for cross-validation.
There are 6 pairs of parameters, hence six “slice” plots and 6 two-dimensional
profile plots. Some examples are shown if Fig. 6.

7 Migraine settings

Previous examples have shown several of the most important settings. This
Section more systematically review many of the available settings.

44

Figure 4: Examples of plots in the OnePopVarSize model with GSM.
See section 1.3.3 and 6.3 for explanations of each type of plot.

45

0.0

0.2

0.4

0.6

0.8

 0.001

 0.001

 0.01

 0.01

 0.01

 0.05

 0.1 0.2

 0.3

 0.4

 0.5

+

1 3 10 30 100 300

3×10−6

10−5

3×10−5

10−4

3×10−4

0.001

0.003

Profile likelihood ratio

2Nµ on a log scale

D
g

2N
 o

n
a

lo
g

sc
al

e

0.0

0.2

0.4

0.6

0.8

 0.001

 0.001

0
01

 0.01

 0.01
 0.05

 0.1

 0.
2

 0.3
 0.4

 0.5
 0.6

+

1 3 10 30 100 300

10−4

2×10−4

5×10−4

0.001

0.002

0.005

0.01

Profile likelihood ratio

2Nµ on a log scale

2N
fo

un
de

rµ
 o

n
a

lo
g

sc
al

e

0.0

0.2

0.4

0.6

0.8

0.001

 0.001

 0.001

 0.01

 0.05

 0.1

 0.
1

 0.2

 0.3
 0.4

 0.
5

 0.
6 +

3×10−6 10−5 3×10−5 10−4 3×10−4 0.001 0.003

10−4

2×10−4

5×10−4

0.001

0.002

0.005

0.01

Profile likelihood ratio

Dg 2N on a log scale

2N
fo

un
de

rµ
 o

n
a

lo
g

sc
al

e

0.0

0.2

0.4

0.6

0.8

1.0

 0.001

0 001 0 001

 0
.0

01

 0.01

 0.01
 0.05 0.1

 0.2

 0.3

 0.4

 0.5

 0.6 +

10−4 2×10−4 5×10−4 0.001 0.002 0.005 0.01

5

10

15

20

25

30

35

Profile likelihood ratio

2N founderµ on a log scale

2N
an

cµ

1 2 5 10 20 50 100 200 500

−6
10

−6
05

−6
00

−5
95

−5
90

2Nµ on a log scale

ln
(L
)

2e−06 1e−05 5e−05 2e−04 1e−03

−6
10

−6
05

−6
00

−5
95

−5
90

Dg 2N on a log scale

ln
(L
)

1e−04 2e−04 5e−04 1e−03 2e−03 5e−03 1e−02 2e−02

−6
10

−6
05

−6
00

−5
95

−5
90

2N founderµ on a log scale

ln
(L
)

5 10 15 20 25 30 35

−6
10

−6
05

−6
00

−5
95

−5
90

2Nancµ

ln
(L
)

0.
05

0.
10

0.
20

0.
50

1.
00

N < ratio on a log scale

Li
ke

lih
oo

d
ra

tio

0.03 0.1 0.3 1 3 10 30 100 300

0.95

0.99 0.
05

0.
10

0.
20

0.
50

1.
00

Nact N founder < ratio on a log scale

Li
ke

lih
oo

d
ra

tio

100 300 1000 3000 104 3×104 105 3×105 106

0.95

0.99

0.
05

0.
10

0.
20

0.
50

1.
00

N founder Nanc < ratio on a log scale

Li
ke

lih
oo

d
ra

tio

3×10−6 10−5 3×10−5 10−4 3×10−4 0.001 0.003

0.95

0.99

One−parameter likelihood ratio profiles

Figure 5: Examples of plots under the OnePopFounderFlush model with GSM.
See section 1.3.3 and 6.3 for explanations of each type of plot.

46

0.0

0.2

0.4

0.6

0.8

1.0
 0.001

 0.01
 0.05

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0
.7

+

0.001 0.0050.01 0.05 0.1 0.5

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

Profile likelihood ratio

2Nm12 on a log scale

2N
m

21
 o

n
a

lo
g

sc
al

e

−630 −625 −620 −615 −610 −605−
63

5
−

62
5

−
61

5
−

60
5

Predicted values

E
st

im
at

es

−620

−615

−610

−605

2 5

0.2

0.5

+

 −645

 −640

 −635

 −635

 −630 −
63

0

 −630

 −625

 −625

 −625

 −625 −620

 −615

 −610

 −605

(2Nm12, 2Nm21) = (0.124, 0.118)

2Nµ

Q
1

1e
−

06
1e

−
04

1e
−

02
1e

+
00

2Nµ on a log scale

Li
ke

lih
oo

d
ra

tio

2 3 4 5 6

1e
−

06
1e

−
04

1e
−

02
1e

+
00

Q1 on a log scale

Li
ke

lih
oo

d
ra

tio

0.2 0.5

1e
−

05
1e

−
03

1e
−

01

2Nm12 on a log scale

Li
ke

lih
oo

d
ra

tio

0.001 0.0050.01 0.05 0.1 0.5 1

1e
−

05
1e

−
03

1e
−

01

2Nm21 on a log scale

Li
ke

lih
oo

d
ra

tio

0.001 0.0050.01 0.05 0.1 0.5 1

One−parameter likelihood ratios

0.01 0.05 0.50 5.00

−
14

00
−

10
00

−
60

0

2Nµ on a log scale

ln
(L

)

0.001 0.005 0.050 0.500

−
14

00
−

10
00

−
60

0

Q1 on a log scale

ln
(L

)

5e−04 5e−03 5e−02 5e−01

−
14

00
−

10
00

−
60

0

2Nm12 on a log scale

ln
(L

)

0.001 0.005 0.050 0.500

−
14

00
−

10
00

−
60

0

2Nm21 on a log scale

ln
(L

)

2 3 4 5 6 7 8

−
63

5
−

62
5

−
61

5
−

60
5

2Nµ on a log scale

ln
(L

)

0.1 0.2 0.3 0.4 0.5 0.7

−
63

5
−

62
5

−
61

5
−

60
5

Q1 on a log scale

ln
(L

)

5e−04 5e−03 5e−02 5e−01

−
63

5
−

62
5

−
61

5
−

60
5

2Nm12 on a log scale

ln
(L

)

0.001 0.005 0.050 0.500

−
63

5
−

62
5

−
61

5
−

60
5

2Nm21 on a log scale

ln
(L

)

Figure 6: Examples of plots under the two-populations model.
See section 1.3.3 and 6.3 for explanations of each type of plot.

47

7.1 General features of settings

7.1.1 The settings file

The settings file allows one to control various settings of Migraine. It con-
tains lines of the form keyword=option, where option can take various formats
as described below. Any line not of the form <Recognized keyword>=<option>

is ignored (empty <option> are allowed for some settings). Lines start-
ing with %, # or // are ignored. Capitalization is not important except for
path/file names under Linux.

The file is read at the beginning of execution. The file, or specific settings,
may be missing, in which case case Migraine uses default values. These
default values are set so that users can check that the program is running
as expected before acquiring a full knowledge of the options; they do not
represent suggested values for good performance.

The default name of the settings file is migraine.txt. You can change
this through the command line:

migraine SettingsFile=mysettings.txt

will make Migraine read mysettings.txt rather than migraine.txt.

7.1.2 The command line

Options can also be given through the command line. However, in contrast
to the settings file, one must avoid blank spaces as a separator within an
option (e.g. UpperBound=0.5 5 0.99 will not work). Commas will do, as in

migraine SettingsFile=mysettings.txt NrunsPerPoint=10 UpperBound=0.5,5,0.8

which makes Migraine read all settings in mysettings.txt, then override
the NrunsPerPoint and UpperBound values given in this file.

7.1.3 Order of settings

The relative order of some settings matters. PointNumber will override previ-
ous values of pointIndex, pointmin and pointmax. ParameterValue over-
rides previous values of LowerBound and UpperBound by replacing both by
the given ParameterValue, and each of them can also be overriden by new
values. For safe use, follow a simple and logical sequence, as e.g. in the
settings file used to produce the examples of Section 1.3.1 and 1.3.2.

48

7.1.4 The Iterations and Boolean syntaxes

As previously explained, Migraine makes it easy to perform iterative analyses
where in each iteration, R can be called and the results of the R analysis can
be used to fine-tune further computations in the next iteration, in particular
by allowing a better exploration of the parameter space. Several settings can
take different values over successive iterations, and thus their value is a list:

writeSequence=KrigOnly,Over,Over

StatisticSequence=PAC,PAC,IS

PointNumber=150,500

The first value is used in the first iteration, and so on... no trap here. The
number of iterations is set by the writeSequence setting. Here, three itera-
tions should be performed. If n iterations are called for by the writeSequence
and there are less than n values (say m) in another list, the last value in that
list is used in all iterations beyond the mth one. Thus in the above example,
the second PointNumber and writeSequence values are used in the third it-
eration. Settings that follow this general rule are marked as iteration syntax
in the following sections. The writeSequence and StatisticSequence are
special in the way a number of repeats can be specified. Thus, the above
example can be coded as

writeSequence=KrigOnly,Over,2

StatisticSequence=PAC,2,IS

PointNumber=150,500

The“2” in writeSequence=KrigOnly,Over,2 implies that the previous Over
statement is to be applied twice. The same logic holds for StatisticSequence=PAC,2,IS.
Obviously, this logic does not work for list of numerical values such as
PointNumber.

Note that since Migraine uses the blackbox R package (i.e. since v.0.5),
it is now recommended to do more iterations with fewer points in each iter-
ations (e.g. 4 to 15 iterations with 50 to 400 points each, depending on the
dimension of the parameter space) than few iterations with lots of points.
For example, under the OnePopVarSize model, 8 iterations with 200 points
each should give better results than 2 iterations with 800 points each, as we
previously recommended.

Booleans can be entered easily: they are False when the value given is
False, F, No, or N; they are True when the value given is True, T, Yes, Y,
or unspecified (as in “writeAdHocFiles=”). Settings that follow this pattern
will be marked as Boolean syntax.

49

7.1.5 The locus vector syntax for analyses with multiple markers

Migraine can analyze different types of markers in a single analysis (e.g.
tetra-nucleotide microsatellite loci following a SMM and di-nucleotides fol-
lowing a GSM). For such multi-marker analyses, several settings can take
different values for the different markers, and thus their value is a list. The-
ses values can be set for each locus, or for groups of homogeneous markers
defined by the lociPerModel keyword. For example, if one wants to analyze
a set of 10 microsatellite markers, composed of 4 di- and 6 tetra-nucleotide
unordered loci, by choosing a SMM for tetra- and a GSM for di-nucleotides,
then the settings can be either

MutationModel=SMM,GSM,GSM,GSM,GSM,SMM,SMM,SMM,SMM,SMM

GivenK=200,40,40,40,40,200,200,200,200,200

SMMStepsizes=4,2,2,2,2,4,4,4,4,4,4

or, in a more compact form,

lociPerModel=1,4,5 <= defines groups of 1, 4 and 5 loci

MutationModel=SMM,GSM,SMM

GivenK=200,40,200

SMMStepsizes=4,2,4

If we assume the 7th and 8th loci to be sequence markers (i.e. under
ISM), we can now write the example above as follows:

lociPerModel=1,4,1,2,2

MutationModel=SMM,GSM,SMM,ISM,SMM

GivenK=200,40,200,Auto,200

Note that GivenK has no meaning under the ISM, and should be set to Auto.
SMMStepsizes also has no meaning under the ISM, and its value will not be
considered.

Settings that follow this general rule are marked as locus vector syntax
in the following sections.

7.2 Settings by theme

7.2.1 Data input

GenepopFileName=mydata (or GenepopInputFile or GenepopFile)

tells Migraine to read the mydata file in the Genepop format as shown in
6.1.1 (and overrides any previous job/jobmin/jobmax specifications, see Sec-
tion 8).

50

GenepopRootFileName

for reading multiple Genepop files: see Section 8.

NexusFileName=mydata (or NexusInputFile or NexusFile)

tells Migraine to read the mydata file in the NEXUS format as shown in
6.1.2 (and overrides any previous job/jobmin/jobmax specifications, see Sec-
tion 8). For anlayses with multiple DNA sequence loci, Migraine will au-
tomatically add ’ locX’ at the end of the NexusFileName, so that the name of
the nexus file e.g. for the third sequence locus will be NexusFileName loc3.nex.

NexusRootFileName

for reading multiple NEXUS files: see Section 8.

writeAdHocFiles=False boolean syntax.

When this is true, Migraine creates ad hoc files from the Genepop input file.

Loci

This setting serves to specify assumptions about the analyses of different
loci. Polymorphic (the only option implemented so far) will thus consider
monomorphic loci as uninformative and analyze only polymorphic loci. The
default is to consider all loci as informative (monomorphic loci will thus drag
down estimates of mutation rate, but other estimates should be affected as
well).

skipLoci

This setting is used to exclude some loci from the analysis. It is a vector
of intergers with each loci number that should not be considered for the
inference. See also the keyword KrigLoci (section 7.2.7) that can be used to
select a subset of loci to be analyzed in R.

NexusTaxonLabels

The user needs to tell Migraine the type of the sequence labels contained
in the NEXUS file. The following options NexusTaxonLabels=Numerical or
NexusTaxonLabels=other are implemented.

GenepopIndividualLabels

The user also needs to specify the type of the individual labels contained in
the Genepop file. The following options GenepopIndividualLabels=NexusLabel
or GenepopIndividualLabels=other are implemented.

7.2.2 Spatial information

See Section 6.

51

7.2.3 Demographic models

DemographicModel

This setting specifies the demographic model to be considered for the anal-
ysis. The following options are currently implemented: (i) linearIBD for
the linear habitat model and planarIBD for the two-dimensional habitat
model; (ii) OnePop for the time-homogeneous panmictic population model;
(iii) OnePopVarSize for the model of a panmictic population with variable
population size; (iv) OnePopFounderFlush for the model of a panmictic pop-
ulation with variable population size; (v) 2pop for the time-homogeneous
2-populations model. See section 4 for details on the different demographic
models implemented in Migraine.

There is a further setting for the IBD model:

Geometry=circular

assumes a circular or toroidal array in the IBD model. This may not be of
much use in real data analysis. Otherwise, by default a linear/planar array
with absorbing boundaries is assumed.

For the OnePopVarSize and OnePopFounderFlushmodels, some other set-
tings are implemented:

VarSizeFunction

This setting specifies the type of population size variation considered under
the OnePopVarSize model. The following options are currently implemented:
(i) Discrete for a discrete change in population size occurring at T ; (ii)
Exponential for a continuous exponential change occurring between T +D
and T (Default). See section 4.5.

TimeScale

This setting specifies the scaling used for time parameters in non-equilibrium
models (e.g. T and D for OnePopVarSize and OnePopFounderFlush). The
following options are currently implemented:

(i) PopSize for inference of time scaled by population size (i.e. T =
Tin generations /2Ncurrent and D = Din generations/2Ncurrent); this is the default
and recommended option;

(ii) MutationRate for inference of time scaled by mutation rate (i.e. Tg ∗
mu = µTin generations and Dg ∗ mu = µDin generations). This is implemented
for comparison with other programs (e.g. IM, MIGRATE, DIYABC,...) and is
expected to give estimates with more variance than scaling by population
sizes in most demographic situations Leblois et al. (2014).

52

Note that point estimates and 1D profiles of Tgmu and Dgmu are now
computed by default (e.g. with TimeScale=PopSize) under the OnePopVarSize
and OnePopFounderFlush models as extra- parameters. However, the user
still needs to add those parameters in the keywords oneDimCI (or 1DCI) and
2Dprofiles settings to get confidence intervals and 2D profile plots for those
parameters.

7.2.4 Mutation models

As previously described, a locus vector syntax is available to specify dif-
ferent mutation models for the different loci. For many loci, this is facil-
itated by the lociPerModel setting. Each mutation model is declared by
MutationModel and further modified by GivenK and SMMstepSizes (depend-
ing on the model), as follows:

MutationalModel (or MutationModel) locus vector syntax

The following options are currently implemented:

MutationModel=PIM for a K-AM or PIM mutation model. The number of
allelic states of the model is set as explained below with the setting
GivenK.

MutationModel=SMM for a strict (i.e. single step) stepwise model (SMM, see
section 3.2 for details), and

MutationModel=GSM for a generalized stepwise model (GSM, see section 3.3
for details), in which each mutation adds or removes X motifs of the
microsatellite loci, with X following a geometric distribution with pa-
rameter pGSM.

MutationModel=ISM uses the infinite sites model (ISM, see also 3.4) for DNA
sequence data type, in which each mutation adds a new segregating
nucleotide position. Note that under this mutation model, Migraine
can use the importance sampling equations given by de Iorio & Griffiths
(2004a,b) (Default) or the algorithm of Hobolth et al. (2008) (with the
setting HobolthProposal=true) .

In both the stepwise models, the name of each allele can either corre-
spond to (1) its total length in bp or (2) the number of repeats of a mi-
crosatellite motif. For the latter case, one should also indicate the size of
the repeated motif using the SMMstepSizes setting described below. This is
especially important for inferences under time-inhomogeneous models such
as the OnePopVarSize model (see p.16).

53

Reflecting boundaries are assumed for the GSM, and reflecting or circular
boundaries are assumed for the SMM depending on the number of allelic
states (see sections 3.2 and 3.3).

The default number K of allelic states is the observed number of alleles
in the data for the KAM. For the GSM, K = 40 by default. However, this value
may be too low for some loci. Migraine then outputs a warning message and
automatically extend the number of allelic states to be equal to the number
of observed allelic states + 10. For the SMM, the default K is 400, but can be
overridden by the SMMstepSizes setting described below. K can be further
controlled in all models by the setting GivenK:

GivenK (or AllelicBounds) locus vector syntax

GivenK=n allows one to override default values of number of possible allelic
states. Different numbers of states may be specified for different loci. For
example GivenK=3,7 means that a 3-alleles model is assumed for the first
locus and a 7-allele model is assumed for al further loci. This setting will be
ignored if unfeasible (i.e. more observed alleles that given by GivenK).

For the GSM, although high values can be specified using GivenK, this
is not recommended because computation times strongly increase with the
number of allelic states.

For the SMM, whether circular or reflecting boundaries are considered de-
pends on K. For given K, computations are faster in the circular case but
involve approximations which may be poor for large mutation rates and low
K.5 Hence it is highly recommended to set K to a large value; a finite circu-
lar SMM is considered in Migraine when K ≥ 200, and reflecting boundaries
are considered otherwise. 200 appears to give good results for most analyses,
but high values of 2Nµ or very low migration rates necessitate larger values,
e.g. 400 (the default) or even 600. Note that high K values may increase
computation times.

Note that the GivenK keyword doesn’t apply to sequence loci (i.e. ISM)
hence one needs to specify the value Auto for such loci.

SMMstepSizes locus vector syntax

This setting controls the length of the repeated motif for each microsatellite
locus. This setting is only necessary if the length in bp, and not the number of
repeats, of each allele is given in the input file. By default, it is one for all loci,

5For the circular case, computations are done using using eq. 3.18 in de Iorio et al., 2005,
modified as detailed p. 27. For reflecting boundaries, computations use an eigensystem
decomposition as described in the appendix of Leblois et al. (2014) (default, forced with
PiSolverOnePop=Eigen), or using matrix inversions as in eq. 19 in Stephens & Donnelly
(2000) (forced with PiSolverOnePop=SD) which may be very slow for time-inhomogeneous
models like onePopVarSize and OnePopFounderFlush.

54

so that length in bp and in number of repeats are equivalent. The syntax
is the following, for 6 microsatellite loci, 2 dinucleotide, 2 tri and 2 tetra:
SMMstepSizes =2,2,3,3 4 4 each value being separeted by a comma or a

space. Note that SMMStepsizes also has no meaning under the ISM, and its
value will not be considered for the ISM loci. This parameter and the fact
that all alleles in the data set follow a stepwise model according to the motive
length of the microsatellite locus is especially important for inferences under
time-inhomogeneous models such as the OnePopVarSize model (see p.16).

lociPerModel locus vector syntax

This setting controls the different type of loci used for analyses with different
type of markers. It is a vector of integers giving the number of loci for
each type of marker (or each mutation model chosen for each marker), in
the same order than in the Genepop file. The sum of the different values
of lociPerModel is the total number of loci analyzed. For example, if one
wants to analyze a set of 10 microsatellite markers, composed of 4 di- and
6 tetra-nucleotide unordered loci, by choosing a SMM for tetra- and a GSM
for di-nucleotides, then the settings can be one of the two following options:

MutationModel=SMM,GSM,GSM,GSM,GSM,SMM,SMM,SMM,SMM,SMM

GivenK=200,40,40,40,40,200,200,200,200,200

SMMStepsizes=2,4,4,4,4,2,2,2,2,2,2

or more simply

lociPerModel=1,4,5

MutationModel=SMM,GSM,SMM

GivenK=200,40,200

SMMStepsizes=2,4,2

PromptForHyperSegSites

All sequence data to be analyzed by Migraine is expected to follow the
assumptions of the Infinite Sites mutation model (ISM) which means that
segregating sites are supposed to have only the ancestral and/or derived
variants. In case of more than two polymorphisms at a given segregating
site and the mention of this keyword (on a separate line in the settings
file), Migraine interactively helps the user choose between eliminating the
segregating site or the haplotypes contributing to the excess polymorphism.

ResolveForPerfectPhylogeny

55

Migraine expects that the provided sequence data in the NEXUS file satisfies
the assumptions of the Infinite Sites mutation model (ISM). A standard way
to verify for this is to perform a Four-Gamete Test (FGT, Hudson & Kaplan,
1985) which checks every possible pair of segregating positions and if it finds
all four haplotypes (00,01,10 and 11) then it is evidence of a back mutation
and the lack of a perfect phylogeny (Gusfield, 1991). The latter is a branching
tree upon which mutations are assigned to specific branches and always exists
for ISM-compatible data. This keyword can be assigned any of the following
values :

=manual where the user resolves perfect phylogeny incompatibilities man-
ually but with Migraine’s help

=haps (or =haplotypes) where Migraine automatically eliminates the
haplotypes containing the nucleotide positions which contribute most to the
failure of the FGT.

=sites (or =nucleotides) where Migraine automatically eliminates
the the nucleotide positions containing the maximum number of FGT in-
compatibilities.

=auto (or =automatic) where Migraine automatically chooses to elim-
inate between the haplotypes and/or the nucleotide positions in order to
eliminate all of the FGT incompatibilities.

7.2.5 Control of iterative computations

In each iteration, points are written in the nextpoints_n.txt file and read in
the next Migraine iteration. Likelihoods are then computed for these points.
The aim of the sampling procedure is to produce by successive iterations a
well-centered likelihood ratio plot including all points with high likelihood
(as determined by NextboundsLevel). It is advised not to alter the default
behaviour. Nevertheless, the long version of this documentation describes
how some settings can be used to control the sampling.

NextBoundsLevel

The confidence level used to define the bounds in the next step of the iterative
algorithm (not to be confused with CICoverage used to determine confidence
levels of intervals reported in output files). Default value is 0.001.

WriteSequence (Iterations syntax)

This setting determines whether previous contents of pointls_n.txt are
appended or overwritten with the new series of points computed. In the first
iteration, it also allows one to reuse the results of a previous run.

56

WriteSequence=Append will append the previously existing file, whether
from a previous kriging iteration from the same run of Migraine or from
a previous run. WriteSequence=Over,Append will overwrite any preex-
isting file in the first iteration, then append. The default is overwrite in
all iterations (equivalent to WriteSequence=Over). Beyond Over and
Append, other options are KrigOnly, WriteRKrig, ReadBoundsOnly,
and WriteROnly:

A final number n as in, e.g., WriteSequence=<...>,Append,n means: apply
the latest stated operation (here Append) the given number n of times.
Thus
WriteSequence=Append,2,Over,Append,2 would first accumulate the
computations of the first two iterations, then overwrite them and ac-
cumulate the computation of the next three iterations. It obviously do
not operate as the first value of WriteSequence.

WriteSequence=<...>,noRcall means: do not call R on the results of pre-
vious computations. It is meaningful only if preceded by a single Over

or Append statement.

WriteSequence=KrigOnly means: Krig an existing file and continue. For
example, WriteSequence=KrigOnly,Append will perform kriging of a
preexisting “pointls” file using an existing R code, then append likeli-
hood computations results to the “pointls” file.

WriteSequence=WriteRKrig means: write the R code and perform krig-
ing of an existing data file. It operates only as the first value of
WriteSequence.

WriteSequence=ReadPoints means: read points generated by a previous
R run. It operates only as the first value of WriteSequence, typically
followed by ,Append.

WriteSequence=WriteROnly means: exits after writing the R code. It op-
erates only as the first value of WriteSequence.

The last five options are meaningful only for the first iteration, and values
of other iterative settings such as StatisticSequence are then meaningless
for this first iteration. However, those other settings should also be given
a value for the first iteration (so that one does not have to change them
when one changes WriteSequence). For example, to achieve PAC-likelihood
computation in the second iteration and IS in the third, one should set
StatisticSequence=IS,PAC,IS or StatisticSequence=PAC,PAC,IS, even
though the first IS/PAC term is ignored.

57

The code written in the R file depends depends on various settings read by
the parent C++ process. Hence, Do not analyze Migraine output obtained
for some values of the settings with an R batch file written for other values
of them. Hence, only use the R file written by the same run as the likelihood
computations analyzed, or produced from the same settings file with minimal
alterations (settings that can be changed are writeSequence, krigmax and
associated settings, graphic control settings, LRT and CI settings). It is easy
to recreate the correct R code using the writeRKrig or writeROnly options.

7.2.6 Control of sampled points

PointNumber (Iterations syntax), pointmin and pointmax

These settings control the parameter points at which likelihood is com-
puted. PointNumber is the total number of points considered in the pa-
rameter range. Its default value is 512 at the time of writing, but do not
trust that. As for NrunsPerPoint, a sequence of values can be given, e.g.
PointNumber=1000,5000, so that the ith value is used in the ith kriging iter-
ation, and the last specified value is used for all further kriging iterations. See
the different sections called “Hints for good results” to have more information
about this setting.

Parameters points are sorted by increasing value (order function in R).
Likelihood will be computed at pointmax-pointmin points out of them,
starting with point pointmin+1. The default values are pointmin= 1 and
pointmax=PointNumber, so that all PointNumber points are considered. When
these default settings are changed, execution of R code is switched off6 (it
may be reset on by a later use of writeSequence in the settings).

pointIndex

This setting asks for a single point being computed by setting pointmin and
pointmax to the pointIndex value given. The value is the index of the
point, so it is 1 ≤ . ≤PointNumber ones. If you want to specify a point by
its parameter values, look for ParameterValue.

ptSamplingSeed

This controls the random number generator for sampling of points. If you
don’t use this setting, Migraine should sample identical points in each execu-
tion. The seed should be an integer between 0 and 4294967295. The default
value is 67144630.

6This is useful as it prevents inference of likelihood surfaces from only a subset of all
the points by each of a number of parallel runs of Migraine when the computation of
many points is distributed among different processors.

58

LowerBound and UpperBound

This settings sets lower and upper bounds of the range of parameter values
explored by the program (at the first iteration, at least). As Migraine can au-
tomatically expand the parameter range explore between different iterations
(se section 7.2.5 “Control of iterative computations” for details), absolute
minimal and maximal values for each parameter, i.e. that can never be ex-
ceeded during the whole iterative procedure, can be set using the parMinima

and parMaxima settings describe below. See the description of each statistical
model for further details.

parMinima and parMaxima

sets the absolute maximum and minimal parameter values to be explore
during the iterative procedure.The argument is a vector of parameter names
associated with numerical value, for any subset of the canonical parameters
of the model. For example in a four-parameter OnePopVarSize model with
a GSM,

parMinima=twoNmu=0.0001,D=0.0001,TwoNancmu=0.1

will set absolutes limits for the three demographic parameters of the model,
so that values below those limits will never be considered at any iterative
step by Migraine.

parMaxima=pGSM=0.7

will set an absolute upper limit for the pGSM parameter. All other parameters
do not have any absolute upper limits in this case.

Note that parameter names are entered in an “ASCII-safe” style (2Nmu or
twoNmu rather than 2Nµ); they can be omitted only if all canonical parameters
are given in canonical order.

samplingSpace

Along with samplingScale, this setting helps define the parameter val-
ues that are sampled uniformly within the range given by LowerBound and
UpperBound.

The statistical model defines some “canonical” parameters (2Nµ, 2Nm
and g for the geometric dispersal model). The bounds define a range of val-
ues of the parameters to be explored, by default an (hyper)cube of values for
these parameters. For all models but IBD, the default “canonical” sampling
scale should be used and there is no clear reasons to use another space. But
for the IBD model, this may not be most appropriate when only some com-
binations of parameters have a high likelihood. For example, the likelihood
may be mainly function of the composite neighborhood (Nb) parameter, and

59

in that case it is more interesting to investigate high Nm/low g values, and
conversely, for fixed Nb values (both a high Nm and a high g value will result
in an extremely large Nb value). Rather than sampling given ranges of Nm
and g values, it is then better to sample given ranges of Nb and g values. The
samplingSpace parameter specifies the meaning of the bounds. Note that
the parameters points (as they appear in pointls_n.txt and output_n.txt
files, in particular) are still in terms of the canonical parameters of the model.

There are two implemented deviations from the canonical set of param-
eters. The first is samplingSpace=,Nb, which specifies that the second
parameter is the neighborhood size rather than 2Nm. In the linear habi-
tat model where Nb values depend on the spatial scale assumed by the
user, all values of Nb input by the user and returned by the program are
in the scale given by the user. The second is samplingSpace=,,condS2

(or samplingSpace=,,DispersedSigma2). Together with samplingScale=,

,logscale, this performs uniform sampling of ln(σ2
cond) rather than g (recall

that σ2
cond is the mean-squared dispersal distance of dispersed genes and is

only a function of g). This can be generally useful when there is a plateau of
high likelihood values for large values of the neighborhood size, as expected
for samples simulated under high neighborhood values. See for example the
analysis in Section 9.1. This is also useful for example if the g value to be
tested is 0.99999. In that case uniform sampling of hundreds of g values is
unlikely to generate g values large enough, so that ultimately no predicted
likelihood value will be available for testing g = 0.99999, nor for testing the
implied neighborhood value. Users can easily control the g sampling on an ad
hoc basis using lowerBound and upperBound settings, but for more system-
atic evaluations, uniform sampling and kriging of ln(σ2

cond) values is useful
(Rousset & Leblois, 2012). In contrast to the Nb scale, σ2

cond is considered
only a transformation of g and does not depend on the spatial scale. In other
words, it is measured in lattice units. In these units it is at least 1 in linear
habitats and 1/2 in two dimensional habitats.

SamplingScale

SamplingScale=,logscale, (say) indicates that the second variable is to
be sampled uniformly on a logarithmic scale. Note that we assume that
most users prefer not to input values on a log scale, so the meaning of the
Lower/UpperBound values is unaffected by this setting (if one wants a max-
imum neighborhood value of 105, for example, this value, not its logarithm,
should be declared through Lower/UpperBound).

Combining the LogScale option with either the Nb or DispersedSigma2
options for SamplingScale is recommended when the signal of isolation by
distance is weak; whichever of the alternative parameters is best to con-

60

sider depends on the precision of Nm estimation (as can be assessed from
the Nm confidence intervals). We suggest starting with samplingSpace=,

,DispersedSigma2 and samplingScale=,,logscale for populations from
“continuous” habitats.

Using the LogScale option for parameters θ, (T,)D, θfounder and θanc is
also recommended for the OnePopVarSize and OnePopFounderFlush mod-
els, at least for the first run. The reason is, because there is usually no a
priori concerning past variations in population size, Migraine must explore
very different parameter values to correctly infer all possible demographic
scenarios (i.e. stable, contracting or expanding population).

Note that the kriging parameter space (including any log transformation)
is by default the same as the sampling scale. It is possible to alter this behav-
ior, using the KrigSpace and KrigScale settings described in Section 7.2.9.

ParameterValue (or ParameterPoint)

This asks for computation at the given parameter vector. The syntax is
the same as for LowerBound and UpperBound: this setting works by set-
ting both the lower and upper bounds to the given vector. If you specify
PointNumber=n, you will have n estimates for the given parameter value.
Kriging is disabled by this setting. Do not use WriteSequence=Append with
this.

7.2.7 Control of likelihood estimation

NrunsPerPoint (Iterations syntax)

The number of trees (for the IS algorithm) or sequences (for PAC-likelihood)
considered in estimation of likelihood for each parameter point.7 A sequence
of values can be given, e.g. NrunsPerPoint=10,50, so that the ith value is
used in the ith kriging iteration, and the last specified value is used for kriging
iterations beyond the last one. See section 2.2 and the different sections called
“Hints for good results” to have more information about this setting.

replicatedPoints

The number of parameter points for which two likelihood estimates are com-
puted.8

The computation of such replicates is required to avoid some pathological
behavior during kriging. On the other hand, the kriging code will not handle
more than two replicate likelihood estimates for a single parameter point.

7default is 10 at the time of writing.
8default is one every 30 replicated points, with a minimum of 10, at the time of writing.

61

Although this could be implemented, this should not be very useful, and
the presence of more than two replicates will generally indicate that the
same computation has been accidentally repeated when it shouldn’t. For
this reason, Migraine actually checks that no such thing is attempted. It
is possible to compute more than two replicate likelihood estimates, using
ParameterPoint, but only if these estimates are not appended to an existing
pointls file. Kriging is then disabled.

See also the option writeSequence=AddReplicates=n to add a second
replicate for a few points to a preexisting pointls file.

addReplicates

Adds one replicate for the given number of points. This is used as an ar-
gument of writeSequence, not as a stand-alone keyword. For example, if
pointNumber=512 and writeSequence=addReplicates=10, a replicate will
be computed for one every 51 points. Note that this really adds replicates to
the results of a previous run only if the same ptSamplingSeed is used in the
successive runs of the program.

StatisticSequence (or simply Statistic) (Iterations syntax)

This setting controls the type of algorithm used to estimate likelihood or a
heuristic approximation of it. Use Statistic=IS for strict likelihood analy-
sis. With Statistic=PAC, PAC-likelihood computation is turned on, but it
is feasible only for time-homogeneous models (i.e. IBD, OnePop and 2pop).
Note that whith Statistic=IS, exact analytical computations of the prob-
ability of the last pair of gene is used (see Rousset & Leblois, 2012; Leblois
et al., 2014), unless it is explicitly disabled by Statistic=ISstrict.

Further settings are specific to time-inhomogeneous models (i.e. OnePop-
VarSize and OnePopFounderFlush), they are: PACanc, for using strict like-
lihood for the recent part of the coalescent simulation (i.e. from T +D until
present) and PAC-likelihood computations for the ancestral part of the co-
alescent simulation (which corresponds to an equilibrium population); and
PAC2id for combining PACanc with analytical computation of the probability
of the last pair of genes.

This setting follows the iteration syntax, so that StatisticSequence=PAC,2,IS
will perform PAC-likelihood analysis twice before applying IS. However, points
computed by different methods should not be concatenated.

UsePCL_SISR

If UseSISR=true (default is false) the likelihood is inferred using the resam-
pling procedure of Merle et al. (2017). Details about the algorithm and the
different parameters used by this algorithm can be found in this publication.
This setting can only be used with StatisticSequence=IS or ISstrict,

62

not with PAC. When using the resampling algorithm, the following settings
should also be defined:

SISR_Alpha, is one of the tuning parameters , with SISR_Beta below,
that are used to balance the effect of the information provided by the
SIS weight and by the composite likelihood, respectively.

SISR_Beta is the second tuning parameter. These two settings takes
values between 0 and 1.0. Section 4 (Results) in Merle et al. (2017)
provides numerical examples showing the efficiency of the resam-
pling distribution for a large range of values of the tuning param-
eters α and β. They shows that the influence of these tuning pa-
rameters is relatively weak (at least for 0.5 ≤ SISR_Alpha ≤ 1 and
10−4 ≤ SISR_Beta ≤ 10−2) and that values of SISR_Alpha=0.7 and
SISR_Beta=0.01 are probably good for a range of scenarios. Larger
SISR_Beta values may give better results for small sample size, and
vice-versa.

SISR_EventsNbBetweenResampling sets the number of events be-
tween two successive evaluation of the ESS. At each of these steps, if
the ESS decrease more than a given factor (see below SISR_ESSMinDecrease),
then the algorithm resamples. Simulation tests suggest that it is bet-
ter to resample as often as possible, that is with SISR_EventsNbBetweenResampling=1.
With SISR_EventsNbBetweenResampling≤0, the algorithm do not
consider resampling.

SISR_CoaEventsOnly, If set to true, the resampling algorithm will
resample (or more precisely compute and compare the ESS, see be-
low) after a given number of coalescence events only, otherwise it
will consider both coalescence and mutation events. Simulation tests
suggest that resampling among histories with the same number of
lineages (that is after a given number of coalescence events with
SISR_CoaEventsOnly=true) is more efficient than considering mu-
tation events too.

SISR_ESSMinDecrease sets the minimum value of the ratio between
the ESS value computed at the previous resampling steps and the
current ESS value (i.e. at the current step of the genealogy recon-
structions) for which a resampling step will be carried out.

63

EstimationSeed

This setting is not needed in routine use. It controls the random number
generator for the IS or PAC runs. Note that this is distinct from
the random number generator used for sampling points, which is
controlled by the PtSamplingSeed setting. If you don’t change the
EstimationSeed value, Migraine should yield identical results for
in each execution (assuming the same points are analyzed in both
runs). The seed should be an integer between 0 and 4294967295.
The default value is 67144630.

subsetPointls

This setting allows to select specific rows in the pointls file (wherein com-
ment rows are ignored). A typical value would be 1:n to indicate the
range from 1 to n. More generally, any subset or rows can be given,
using R syntax.

KrigLoci

This setting allows to select specific loci for kriging (e.g. KrigLoci=1 or
KrigLoci=2,4,6). The default behaviour is to consider all loci in
kriging computations.

7.2.8 Options for likelihood ratio tests and one-dimensional confidence
intervals

Likelihood ratio tests for given parameter values are computed using the
testPoint setting. Precise one-dimensional confidence bounds may be com-
puted using the oneDimCI setting.

Options for single-point tests

testPoint

The argument may be a vector of numerical values for any subset of canonical
statistical model parameters. In the IBD model, the canonical 2Nm param-
eter can be replaced by an Nb value. One or more standard or profile LRT’s
can be computed. For example in a three-parameter IBD model,

testPoint=twoNmu=0.08,twoNm=5,g=0.5

will perform a standard LRT with three degrees of freedom (df),

testPoint=twoNm=5,g=0.5

will compute a single two-df profile LRT of the given (2Nm, g) combination,
and

64

testPoint=twoNm=5

testPoint=g=0.5

will compute two one-df profile LRTs; output order will be the same as
input order. Note that parameter names are entered in an “ASCII-safe” style
(2Nmu or twoNmu rather than 2Nµ); they can be omitted only if all canonical
parameters are given in canonical order.

Options for confidence intervals

oneDimCI (or 1DCI)

The argument is a vector of parameter names, or All to compute confidence
intervals for all fitted and composite parameters. For each of these parame-
ters, the bounds of the one-dimensional profile likelihood confidence interval
for this parameter are computed, and reported as the last two elements of a
line in output_n.txt. The coverage probability of the confidence intervals
is controlled by the CICoverageLevel/CIerrorLevel settings. NA values are
(still) reported after this computation for each bound which appears to be
outside the explored parameter space. The relevant line of the output file
is identified with a <varname>_CI string. All confidence intervals are also
reported in the Results_n.txt file in a more readable form.

CICoverageLevel

As explained above, this sets the coverage probability of the CIs (the proba-
bility that they contain the parameter value). The default value is 0.95.

CIerrorLevel

gives exactly the same information in a complementary way: the probability
that the interval does not contain the parameter value. The default value is
0.05.

Options for plots, including two-dimensional confidence regions

One- or two-dimensional (profile, if relevant) likelihood surfaces can be drawn.
By default only a subset of the possible plots is produced, but more can be
produced using the Plots setting.

Plots

controls the different plots produced by Migraine. In this way it also con-
trols the computation of one- and two-dimensional likelihood profiles. Over-
all Migraine can produce the following types of plots: (1) Likelihood surface
plots, presented either as “perspective” or as “contour” plots (as understood
in R). When there is more than two parameters, the surface plots for a given
pair of parameters assumes that all other parameters are fixed to their ML

65

estimates. The default for all models is to plot surfaces for all pairs of fit-
ted variables, only as contour plots; (2) One-dimensional likelihood profiles.
The default is to ignore them for the IBD model, and to compute all 1D
profiles for the others, except OnePopFounderFlush model(see below); (3)
Two-dimensional likelihood profiles. The default for the IBD model is to plot
only the (2Nµ, 2Nm) and (2Nµ,Nb) confidence regions. The default for all
other models, except OnePopFounderFlush model, is to plot likelihood pro-
files as contour plots for all parameter pairs.
For the OnePopFounderFlush model, .
The default behaviour for the plots can be modified by the following options
that can be combined as in Plots=All2DProfiles,BW,3D:

all1DProfiles will additionally compute one-dimensional likelihood pro-
files for each fitted variable (and composite variables such as Nb, NMratio,
mratio or Nratio’s);

all2DProfiles will additionally compute two-dimensional confidence re-
gions (as contour plots) for all pairs of fitted variables (and Nb, but
not other composite variables such as NMratio, mratio or Nratio’s).

allProfiles is equivalent to both all1DProfiles and all2DProfiles.

noProfiles tells Migraine not to compute any profile.

B&WPlots or BW will additionally provide black and white versions of the
two-dimensional contour plots (of likelihood surfaces and of profiles).

3DPlots or 3D will additionally provide perspective versions of the two-
dimensional contour plots of likelihood surfaces.

Other settings controlling the format of figures are:

1DProfiles

takes a vector of parameters of the model (e.g. 1DProfiles=ParamX,ParamY,ParamZ)
and tells Migraine to compute and plot 1DProfiles for these parameters only.
It can take composite parameters as input, such as Nb, NMratio, mratio,
Nratio’s, and the scale of representation of the composite parameters is then
specified using the setting extraScale described below. This setting is es-
pecially usefull for models that have a high numbner of parameters, leading
to high computation times of 1 and 2D profiles, such as the OnePopVarSize

model.
Since version 0.5.2, profile computations can be parallelize in R using the

keyword CoreNbrForR (see 8.5).

66

2DProfiles

works exactely as 1DProfile described above but takes a vector of parame-
ter pairs (e.g. 2DProfiles=(ParamX,ParamY),(ParamX,ParamZ)) instead of
single parameters.

extraScale

By default the variables shown in plots are based on the kriging variables, but
may involve an additional one (e.g., both 2Nm and neighborhood size are
plotted in the IBD model, although kriging will consider only one of them).
extraScale allows to specify the scale (log or not) for variables not consid-
ered in kriging, the most typical use being extrascale=Nb=logscale under
IBD, extrascale=NMratio=logscale,mratio=logscale for 2pop, extrascale=Nratio=logscale
for OnePopVarSize , or Extrascale=Nratio=logscale,
NactNfounderratio=logscale,NfounderNancratio=logscale for
OnePopFounderFlush. Otherwise, Migraine may use the scale it considers
best.

graphicFormat

Controls the graphic output format; default is eps. The other options are
postscript and pdf as described in the R documentation (other file formats
such as png are not considered because only one plot can be included per
file for them). postscript produces EPS-compatible figures as eps does.
However, the figure dimensions are different. With eps, the width and height
can be controlled through the graphicPars setting.

gridSteps (Iterations syntax)

the number of grid values on each dimension of the grid plots (i.e. plots of
the likelihood surface). The default value is 21. Larger values of gridSteps
may help catching global maxima, and may result in nicer surface plots, but
will take some more time.

plotRange

Used as e.g., plotRange= Nb=50,2000; 2Nmu= 0.05 1. This serves to ex-
plicitly control the range of values in grid plots (from 50 to 2000 for neigh-
borhood, and from 0.05 to 1 for 2Nµ, in this example). Note the syntax:
specifications for different variables are separated by a semicolon, and the
bounds for each variable are separated by a comma or a space (as usual, the
space separator can be used in a settings file but not in the command line).

graphicPars

This allows the user to pass graphical arguments to R. Of course, adventur-
ous users can play with the whole R code, at their own risk. Currently three

67

types of arguments are handled. First, arguments can be passed to the R

par function. These will affect all graphics (with exceptions for 3D plots
produced using the lattice package). For example
graphicPars=cex.axis=0.8,mgp=3,1,0. See the R documentation for the
meaning of the parameters. Second, the dimensions of the plots can be
changed when the graphicFormat is eps (the default), using e.g.
graphicPars=width=7,height=7 (dimensions are in inches per R conven-
tion). Third, the maximum number of ticks on the axes of plots can be
controlled by xmaxticks=n and ymaxticks=n. Defaults are 9 and 10, re-
spectively.

7.2.9 Control of kriging

CovFnParams and fixedSmoothness

CovFnParams is used to give scale parameters for each estimated parameter
of the biological model. A scaled Euclidean distance between parameter
points is given as argument to the MatÃ©rn correlation function. Likewise,
fixedSmoothness is used to set the value of the smoothness parameter of the
MatÃ©rn correlation function. The only sensible value is 4, the maximum
used by Migraine. An estimated value < 4 may be indicative of problems
with the input points. In old versions of Migraine, these settings could be
used to provide the scale parameters obtained in a previous Kriging analysis,
to bypass the slow cross-validation step. In more recent versions of Migraine,
this is less useful, as the implementation of cross-validation is faster, and scale
values estimated in one R run are used as initial value for scale estimation
in the next R run, generally further speeding this step (the nextpoints file
is used for communication between two successive iterations, so this works if
no file manipulation has interfered with this communication). Nevertheless,
these settings are useful for producing figures, as illustrated on p. 80.

KrigSpace (not for normal use)

If e.g. KrigSpace=,Nb,, kriging computations and subsequent plots are per-
formed for neighborhood size rather than for 2Nm. The syntax is the same as
for samplingSpace, and the default value of KrigSpace is samplingSpace.
Altering this default can give poor results.

KrigScale (not for normal use)

This setting (different from KrigSpace!) has two effects. First, it indicates
that a given parameter should be log transformed for kriging. For exam-
ple KrigScale=,,LogScale means that the values of the third parameter
should be log transformed. The syntax is the same as for samplingScale,

68

and the default value of KrigScale is samplingScale. Altering this default
can give poor results. As for samplingScale, KrigScale can be used to
achieve more “dome-shaped” surfaces. Second, beyond this aesthetic consid-
eration, KrigScale affects the generation of the next parameter points by
R. In particular these points will appears uniformly sampled on the kriging
scale.

Users should ideally not interfere with the kriging computations controlled
by the following settings.

CrossValidationPointsNumber or simply GCVptNbr

A target number of points to be selected for the estimation of covariance
function parameters by cross-validation. Cross-validation may be computer-
intensive and is thus performed by default only on a small but generally

sufficient subset of points. The default number is max(100, b250
√
p/3c) for p

the number of fitted parameters (that is, 100, 100, 250, 587, 1246, 2461 for
p from 1 to 6).

minSmoothness=..., maxSmoothness=..., and fixedSmoothness=...

These settings control the estimation of the “smoothness” parameter of the
covariance function used. The covariance at distance d is proportional to
dνKν(d) where Kν is the Bessel function of second kind and order ν, and ν
is the “smoothness” parameter (the higher ν is, the smoother are the realized
surfaces at a small scale). By default, the smoothness parameter is estimated
during the generalized cross-validation step. maxSmoothness sets the maxi-
mum possible value of the smoothness parameter. Default value is 4. minS-
moothness sets the minimum possible value of the smoothness parameter.
Default value is 2 and this cannot be set lower than 1.001. FixedSmoothness
sets both of the previous settings to the same value and effectively inhibits
their estimation. The only safe uses of these settings is to slightly increase
the minimum value or to set both to the fixed value 4.

designRetain and GCVdesignRetain

The cross-validation and kriging steps each consider only a fraction of the
laboriously computed points. The points are selected according to complex
criteria trying to maintain a balance between retaining points in a relevant
upper range of the likelihood “hill”, retaining enough points, and discarding
points that are too close from each other (as close points raise numerical issues
in subsequent matrix computations). designRetain controls the fraction of
points that are retained, for the final step of kriging, as distant enough from
each other. Its default value is 0.95. GCVdesignRetain does the same, but
for the GCV step. Its default value is 1.

69

The algorithm actually first tries to select an excess number of points so
that the target final number (as set e.g. by GCVptNbr) is reached after some
points are discarded according to designRetain specification. Decreasing the
retained fractions have thus the side effect that more points are first selected,
containing a fixed fraction of doublets, and since doublets are preferentially
retained in the final selection, there are more doublets in the latter.

7.2.10 Interaction with the system

Pause

With Pause=Final, Migraine will wait for user feedback when an analy-
sis is done (rather than close the console window under Windows). With
Pause=OnError, Migraine should wait for user feedback when an error lead-
ing to exit from the program is encountered. The default is not to wait for
feedback in any case.

8 Multiple data sets and multiple Migraine runs

Migraine incorporates several facilities for analyzing multiple data or for
breaking a long analysis in smaller parts. We first describe the relevant
settings, then how results are reported in the output_n.txt file, which is
suitable for text manipulations.

8.1 Multiple and concurrent runs of Migraine

The essential keywords are:

JobMin=0

JobMax=29

Job=3

Root File Name (assuming Genepop format, see also NexusRootFileName)

GenepopRootFileName=gpsample

GenepopRootFileName=gpsample

This setting sets the generic Genepop file name that will be incremented by
a job number (see below).

NexusRootFileName=nexusData

This setting sets the generic Nexus file name that will be incremented by a job
number (see below), and a locus number in case of multiple DNA sequence
loci (see section 7.2.1).

70

Job=k

If you have multiple input files gpsample1... gpsamplen in the Genepop for-
mat, Migraine will read a multilocus sample from each file gpsamplek.
Equivalently, if you have multiple input files in the Nexus format begin-
ning with nexusData_rep1... nexusData_repn, and possibly ending with
repX_locY .nex if you have muliple sequence loci, Migraine will read a mul-
tilocus sample from several files named nexusData_repk_locY .nex where
Y takes values from 1 to nLoci the number of sequence loci to analyse.
Sample number k can be specified by the Job setting, which default is 1.

JobMin and JobMax

Multiple data sets can be analyzed in a single run of the Migraine executable
by the JobMin and JobMax settings, such that k runs from JobMin to JobMax.
Default is JobMin=JobMax=1, and values must be ≥ 0.

8.2 Cluster usage: several processes writing in the same di-

rectory

On clusters, make sure that that different processes do not attempt to write
in the same file. You should care about the following issues:

Make sure that the input file is correctly formatted, otherwise it can be lost.
For example, under Linux, Migraine may convert input files created under
Windows, using the dos2unix or fromdos utilities (it may also complain
if these utilities are not found). One solution is run dos2unix before using
Migraine. Under both Windows and Linux, Migraine will also correct badly
terminated data files (a relatively common occurrence according to previous
experience with Genepop). One solution is to perform a minimal run of
Migraine (e.g., with writeSequence=writeROnly) once on the file before
running different processes.

Concurrent processes will write into the same cmdline_n.txt file unless
different names are explicitly provided. Always use the CmdLineFileName

setting in this case (see examples below).

8.3 Linux PC cluster

8.3.1 Migraine command line argument

Separate processes are typically launched by a submission engine such as
Sun Grid Engine (SGE), SLURM or Condor. Each SGE job submission
(obviously written by another shell script) would typically contain either one
of the following lines:

71

./migraine CmdLineFileName=dummy_0.txt job=0

./migraine CmdLineFileName=dummy_1.txt job=1

./migraine CmdLineFileName=dummy_2.txt job=2

...

If analysis of each sample is slow, then each Migraine job may be split in
different jobs as follows (see 8.4)

./migraine CmdLineFileName=dummy_0_1_128.txt ptSamplingSeed=144630 job=0 pointmin=1 pointmax=128

./migraine CmdLineFileName=dummy_0_129_256.txt ptSamplingSeed=144630 job=0 pointmin=129 pointmax=256

./migraine CmdLineFileName=dummy_0_257_384.txt ptSamplingSeed=144630 job=0 pointmin=257 pointmax=384

./migraine CmdLineFileName=dummy_0_385_512.txt ptSamplingSeed=144630 job=0 pointmin=385 pointmax=512

./migraine CmdLineFileName=dummy_1_1_128.txt ptSamplingSeed=14071789 job=1 pointmin=1 pointmax=128

...

Note that (i) the total number of points over all blocks must be given
(here as pointNumber=512) in the settings file which is read by all processes;
(ii) the same ptSamplingSeed should be used for the different blocks on the
same data set, but different ptSamplingSeed can be used for the different
data sets.

For a really hard computation single point computation is achieved by

./migraine CmdLineFileName=dummy_0_1.txt job=0 pointIndex=1

./migraine CmdLineFileName=dummy_0_2.txt job=0 pointIndex=2

...

./migraine CmdLineFileName=dummy_0_512.txt job=0 pointIndex=512

The value of the CmdLineFileName setting is not important except that it
must be different for each process when different processes write files in the
same directory.

For even harder computations, each single point computation can itself
be split: see the runsTempFile setting.

8.3.2 Passing environment variables

With Sun Grid Engine, environment variables may need to be passed to
inherited environments through the -v <variable name> or -V arguments.

As a (nearly) real-life example, one can submit the job qsub todo.0.sh where

======================= file todo.0.sh =================

#!/bin/bash

#$ -S /bin/bash

#$ -N "id.0" <= just a user-defined job identifier

#$ -V <= passing environment variables

#$ -cwd -j y -q long.q <= more qsub arguments

echo $HOSTNAME <= then some lines of info useful if something goes wrong

72

in
p
u
t

fi
le

sta
g
e

p
t.m

in
p
t.m

a
x

2N
µ

2N
m

g
N

b
L

o
g

L
ikelih

o
o
d

retu
rn

co
d

e
L

R
T

or
level

C
I.low

C
I.u

p
p
o
i
n
t
l
s
_
1
.
t
x
t
(
N
b
_
C
I
)

1
5
2
9

0
.
4
8
6
6
.
.
.

1
0
0
.
8
7
3
.
.
.

0
.
4
1
5
2
.
.
.

2
8
8
9
4
1
.
1
.
.
.

-
7
2
3
.
8
9
8
.
.
.

N
A

0
.
0
5

1
3
0
4
1
5
.
6

3
9
7
1
7
0
.
0

echo $JOBNAME

echo $JOB_ID

echo $HOME

./migraine cmdlinefilename=cmdline.0.txt job=0 ptSamplingSeed=144630

==

8.4 Parallel computation of point batches with a bash script
on Linux computers and clusters

A bash script can be provided by the authors to easily parallel computations
of point batches (see section 8.3.1) on linux computers, SGE or SLURM
clusters for single or multiple data set analyses.

8.5 Parallel computation of profiles in R on any PC

Profiling in R can be very slow, notably when a large number of parameters
are considered (i.e. > 4) and the keyword CoreNbrForR set the number of
core of a PC that can be used by R to parallelize profile computations.

8.6 The output_n.txt file

This file contains the results in a form suitable for various text manipulations.
Its format can be guessed by comparison with the results_n.txt file from
the same analysis, except for a few obscure numbers. As an example, consider
the file output_1.txt produced by the sample session. The line containing
the confidence interval information for the neighborhood is shown in the
margin.

8.6.1 General format

The file contain one or more lines each with the following information:

the name of the pointls_n.txt file analyzed;

some optional information about the stage of analysis when the line was
written (e.g. Nb_CI, profiling, LRT, final...);

a range of points used, which exact meaning depends on the step of the
analysis. Here this range is 1 529, where “529” are the 529 likelihood
estimates obtained for 512 parameter points, two estimates being ob-
tained for 17 points;

73

the maximum likelihood estimates of the different parameters. These may
sometime be different in different lines, if a better maximum has been
found at an intermediate step of the analysis. Hence only the last line
should be considered;

the resulting estimate of a composite parameter (neighborhood size for the
IBD model);

the maximized log(likelihood);

either NA or a return code of optimization or of some other operation.
Should be zero for optimization. See Section 8.6.2 for other values and
other operations;

three more slots that may contain different information dependent on the
line in the output file. In this example the last three numbers say that
the 95% interval for Nb is 130416–397170. More generally

� In the primary line, the last slot contains the Kriging smoothness.

� Confidence interval lines will contain (i) the error probability level
of the CI (e.g. 0.05); (ii) lower and upper bounds of the CI, if these
are within sampled parameter ranges (otherwise one or two of the
bounds may be replaced by NA’s).

� Likelihood-ratio test lines will contain (i) a likelihood ratio statis-
tic 2{ln[L(θ̂)] − ln[L(θ)]} for a test point θ (see testPoint set-
ting). This value can again be NA if the LRT could not be com-
puted (e.g. tested value out of sampled range); (ii) the associ-
ated p-value; and (iii) the number of points predicted to be above
the one-dimensional CI threshold (as controlled by the CIBound-

slevel setting). This gives an idea of the amount of information
available to construct the intervals.

� the final line will contain: (i) one NA; (ii) a first value called RM-
Spred which corresponds to the observed root mean square error of
prediction of log-likelihood (i.e.,

√
Mean((logLestimated − logLpredicted)2))

; and (iii) a second value called GOP (for“goodness of prediction”)
that compares observed error of prediction to error of prediction
expected under the assumptions underlying the surface prediction
method (computed as

√
Mean(respV ar/(logLestimated − logLpredicted)2),

where respV ar is the theoretical square error of the kriging (the
sum of the prediction and residual errors of the fit). GOP there-
fore corresponds to the ratio of the theoretical error over the ac-
tual error of the fit. RMSpred and GOP are computed on the

74

upper points only, i.e. being in the envelope controlled by the
CICoverageLevel/CIerrorLevel settings). Both RMSpred and
GOP depend on the quality of the fit, on the density of points but
also on the variance in the likelihood estimation at each parameter
point (see section 2.2). In an ideal situation, notably with a small
variance in the likelihood estimation, a good fit should result in
a small RMSpred value (e.g. < 0.2) and a GOP close to 1 (but
this is rarely the case). When the variance in the likelihood esti-
mation is high (as often observed under disequilibrium models), a
good fit may result in much larger RMSpred values (e.g. up to 0.5
- 0.6) and GOP values (e.g. up to 50). Nevertheless, RMSpred
values higher than 0.5 are indicative that a new analysis with a
higher value for nRunsPerPoints should be performed and low
(<1) or extremely large (>100) GOP values suggest that further
iterations of likelihood estimation and kriging may give better re-
sults. In order to better evaluate the quality of the kriging step,
it is also recommended to check in the Rplots file that (1) 1D
profiles are relatively smooth and (2) the kriging diagnostic plot
looks like a good 1:1 regression with Gaussian-distributed error.

8.6.2 Return code is not 0

The return code from maximization operations is shown after the log likeli-
hood value in the output_n.txt file. The R code now uses nloptr::nloptr
as optimizer. The return code reported by Migraine is 0 if optimization was
successful, and is otherwise the negative code returned by nloptr. See http:
//ab-initio.mit.edu/wiki/index.php/NLopt_Reference for the meanings
of negative codes. The return code for the likelihood ratio test output line is
in general made of an integer part and of a decimal part. A nonzero integer
part indicates that the profile maximum for the tested value is at the edge of
the convex envelope of kriged points. A nonzero decimal part indicates that
the ML estimate is at the edge of the convex envelope of kriged points. Either
case can occur because the maximum considered is at the edge of the biolog-
ically meaningful parameter space (in which case further computations may
not change anything) or because the convex envelope of points considered is
too restrictive (in which case further computations are warranted).

Nonzero codes for other output lines indicate that some numerical op-
eration failed during execution of the optim(...) function in the R code.
In our experience, this has occurred (with return code 52) mostly when the
C++ library was not used, and the Matern covariance family was used with a
high smoothness parameter (≥ 4) (all conditions discouraged by the current

75

http://ab-initio.mit.edu/wiki/index.php/NLopt_Reference
http://ab-initio.mit.edu/wiki/index.php/NLopt_Reference

code). The matrix operations in this case are numerically unstable and, as
a result of numerical artefacts, the predicted likelihood surface will not be
smooth (even if it appears smooth at the scale of the default plots). Con-
sider using the C++ library, and/or else the fixedSmoothness setting in such
cases. Return code 52 can still occur with the C++ library, but no numerical
problem has yet be seen in this case.

9 More examples

In this section, we show how to use Migraine efficiently.

9.1 Linear habitat: choosing a parameter space

Here we consider (unpublished, but real) data at 7 microsatellites in popu-
lations from a linear habitat. The samples roughly align along an habitat
of length 1000m and a 25◦angle relative to the horizontal (East-West) axis,
hence the habitatPars value below. A first investigation with only 10 spatial
bins and wide parameter bounds was conducted:

DemographicModel=LinearIBD

statistic=PAC

PointNumber=256

Nrunsperpoint=5

GeoDistanceBins=10

writeSequence=Over,Append

HabitatPars= 8600 -100 1000 1 25

GenepopFileName=unpublished.txt

BoundsDefs=,Nb,

samplingScale=,logscale,

Lowerbound=0.1,250000,0.01

UpperBound=10,12500000,0.999

GridSteps=11

writeAdHocFiles=T

GeoUnit= ind.m

The PointNumber and NRunPerPoint values are definitely too low, but these
settings nevertheless put one on the right track, not the least because two
iterations are nevertheless performed. The results file, obtained after a few
minutes, indeed contain the following warnings

(!) Few points in upper 12.11 [ln(L) units] range:

only 82 points in this range.

76

(!) No computed point has a predicted likelihood above the one-dimensional CI threshold.

(threshold was -1.921 which is the 0.05 chi-square threshold with 1 df);

It is advised to compute more points in order to obtain good CIs.

The plots are predictably poor-looking, but the most interesting one is
the 2Nµ,Nb profile plot:

0.00

0.02

0.04

0.06

0.08

0.10

 0.001

 0
.0

1

 0.01

 0
.0

5

+

1 2 3 4 5 6 7 8 9

5×105

106

2×106

5×106

107

Profile likelihood ratio

2Nµ

N
b

(in
d.

m
)

on
 a

 lo
g

sc
al

e

which shows where the interesting range of values is. In particular for
2Nµ it is roughly 1 to 2. In a more refined analysis we set

DemographicModel=LinearIBD

statistic=PAC

PointNumber=512

Nrunsperpoint=30

GeoDistanceBins=40

writeSequence=Over

writeSequence=writeRkrig,Append,3 <= four iterations

writeSequence=Readpoints,Append

HabitatPars= 8600 -100 1000 1 25

GenepopFileName=unpublished.txt

BoundsDefs=,Nb,

samplingScale=,logscale,

Lowerbound=0.25,250000,0.4

UpperBound=0.5,12500000,0.999

GridSteps=11,11,11,41 <= larger value in last iteration for nice plots

writeAdHocFiles=T

GeoUnit= ind.m

Note that interesting range 2Nµ is divided by 4 as the number of spatial bins
is fourfold increased, because the N per bin correspondingly decreases. The

77

neighborhood size could have been similarly adjusted by we rather choose to
investigate a wide range of values. This computation takes a short night to
complete, yielding the following profile plots:

0.0

0.2

0.4

0.6

0.8
 0.001

 0.001

 0.001

 0.001

 0.01

 0.01

 0.05

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

+

0.3 0.35 0.4 0.45 0.5

40

60

80

100

120

140

Profile likelihood ratio

2Nµ

2N
m

0.0

0.2

0.4

0.6

0.8

 0.001

 0
.0

01

 0.001

 0.01

 0
.0

1

 0.05

 0.05

 0.1

 0.1
 0.2

 0.3

 0.3

 0.3

 0.4

 0.4

 0.5

 0.5

+

0.3 0.35 0.4 0.45 0.5

5×105

106

2×106

5×106

107

Profile likelihood ratio

2Nµ
N

b
(in

d.
m

)
on

 a
 lo

g
sc

al
e

The 2Nµ, 2Nm plot (left) is a nice example of modern art. Areas show-
ing contour lines but no shading are the result of some extrapolation, as
discussed in section 2.3.3, since kriging was performed on (log)Nb, not on
2Nm. This feature can be modified as explained in the same section. Aes-
thetics aside, this plot is a reasonable output. The 2Nµ,Nb plot is more
questionable, exhibiting multiple maxima for Nb, which suggests that some-
thing went wrong. However, the diagnostic plot is a good-looking regression
with Gaussian error:

−2592 −2588 −2584 −2580−
25

90
−

25
84

−
25

78

 predicted values

Y

 R^2 = 85.69%

and no warning about “smoothness” was issued in the results file.
The plots could surely be improved by additional computations. However,

the two profile plots show that 2Nm can be estimated with relatively good
accuracy, while a wide range of Nb values have high likelihood. This suggests
that 2Nm, rather than Nb, should be used as a variable in the whole analysis,
and then (log) condS2 should be used instead of g to explore a wide range
of large Nb values (see details of the samplingSpace keyword, p. 60):

...

BoundsDefs=,,condS2

samplingScale=,,logscale

Lowerbound=0.25,40,1

UpperBound=0.5,140,1000

78

...

The resulting profile plots are indeed nicer than (but broadly consistent
with) the previous ones. Note that a 2Nµ,Nb plot is still produced:

0.0

0.2

0.4

0.6

0.8

1.0

 0.001

 0.001

 0.01

 0.05

 0.1

 0.2

 0.3

 0.4

 0.5 0.6

 0.7

 0.8

 0.9
+

0.25 0.3 0.35 0.4 0.45 0.5

60

80

100

120

140

Profile likelihood ratio

2Nµ

2N
m

0.0

0.2

0.4

0.6

0.8

1.0 0.001

 0.001

 0.001

 0.01

 0.01 0.05

 0.1

 0.2

 0.3 0.4

 0.4

 0.5
 0.6

 0.7

 0.8

 0.9 +

0.25 0.3 0.35 0.4 0.45 0.5

5×104

105

2×105

5×105

106

2×106

Profile likelihood ratio

2Nµ

N
b

(in
d.

m
)

on
 a

 lo
g

sc
al

e

0.0

0.2

0.4

0.6

0.8

1.0

 0.001

 0.001

 0.01

 0.05 0.1

 0.2

 0.3

 0.4

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

60 80 100 120 140

20

50

100

200

500

Profile likelihood ratio

2Nm

σ2 co
nd

 o
n

a
lo

g
sc

al
e

The plots suggest that there is a second maximum of the likelihood surface
for high Nb or high σ2

cond values, and this would be confirmed by better
sampling of this parameter range (UpperBound=0.5,140,100000).

Despite what was shown in this example, it is worth fixing details of the
figures (such as the horizontal position of the y-axis legend) before producing
figures with high GridSteps values. In order to save some time in the recom-
putation of the figures, it is then useful to provide the covariance function
parameter estimates obtained for a small gridSteps value (but an otherwise
identical analysis), rather than recompute them each time. These estimates
appear on screen and in the R_out_0.txt file output as

...

Cross-validation estimates of correlation function parameters:

twoNmu twoNm condS2 smoothness

79

0.3341275 75.7926204 4.1591363 4.0000000

...

which translates into the following settings:

...

CovFnParams=0.3341275 75.7926204 4.1591363

FixedSmoothness=4

...

9.2 OnePopVarSize and OnePopFounderFlush: choosing the
good number of runs per points

Running Migraine under the OnePopVarSize and OnePopFounderFlush mod-
els may not be always straightforward. The main reason is that IS algorithms
are less efficient when strong and recent changes in population size occurred
in the past, resulting in potentially biased inferences due to a high variance
in the likelihood estimation at each parameter point. This problem is fully
described and discussed in Leblois et al. (2014). We thus strongly advise any
user (1) to read this paper and the current documentation; (2) to run the sec-
ond example described at the beginning of this documentation (Soay shepp
example, Section 1.3.2); and (3) then to read this section; before analyzing
any real data set and interpreting the inference results.

Here, we continue on the Soay sheep example. For the first run, we
considered only 20 runs (i.e. simulated coalescence trees) per points and
only 2 iterations of 300 points each for a very quick analysis. With those
settings, the run completes well within a few minutes, Migraine inferred a
significant bottleneck as well as point estimates and relatively narrow CIs
for all parameters. However, as we previously stated, difficulties to estimate
the likelihood at each parameter point with enough precision can lead to
erroneous inference (Leblois et al., 2014). It is thus important to check if
the number of runs per point we chose (20) we choose was sufficient to get
reliable results. Therefore the most important results to look at are (1) the
diagnostic plot of the kriging (Fig. 7(a)): the diagnostic plot is a relatively
good-looking regression with Gaussian error except for the higher likelihood
values, for which the predicted values seems to flatten the estimated values.
We can also note a relatively high variance in the estimation of the likelihood.
(2) The variance of estimation is also indicated in the last line of the output
(“final” stage), where the last two numbers refers to RMSpred the error of
prediction and GOP the ratio of the theoretical error over the actual error of
the fit (see p.74). In this first example with nRunsPerPoints=20, RMSpred

80

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
● ●● ●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

● ●●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

−670 −660 −650 −640 −630 −620 −610 −600

−6
60

−6
40

−6
20

−6
00

Predicted values

Es
tim

at
es

(a) 20 runs per points (b) 200 runs per points

(c) 2,000 runs per points (d) 20,000 runs per points

2Nmu : 0.28 [0.13 -- 0.51]
Dg/2N : 0.47 [0.24 -- 0.83]
2Nancmu : 6.1 [3.3 – 13]

Nratio : 0.046 [0.023 -- 0.096]
Dg*mu : 0.13 [0.041 -- 0.36]

3.40 5.76

2Nmu : 0.19 [0.07 -- 0.39]
Dg/2N : 0.53 [0.36 -- 0.78]
2Nancmu : 7.4 [4.4 -- 14]

Nratio : 0.026 [0.0095 -- 0.06]
Dg*mu : 0.10 [0.034 -- 0.25]

1.85 29.2

2Nmu : 0.14 [0.019 -- 0.34]
Dg/2N : 0.60 [0.39 -- 0.82]
2Nancmu : 8.4 [4.7 -- 16]

Nratio : 0.016 [0.0027 -- 0.044]
Dg*mu : 0.081 [0.012 -- 0.22]

1.09 28.7

2Nmu : 0.11 [1.2e-05 -- 0.31]
Dg/2N : 0.63 [0.41 -- 1.5]
2Nancmu : 8.9 [5.8 -- 16]

Nratio : 0.012 [1.8e-05 -- 0.039]
Dg*mu : 0.068 [1.5e-05 -- 0.20]

0.53 62.4

Figure 7: Point estimates, associated CIs and kriging diagnostic plots for
different values of nRunsPerPoints from 20 to 20,000 for the analyses of
the Soay sheep data set under the OnePopVarSize model presented a the
second minimal worked example in Section 1.3.2.Note the scale changes in
log likelihood values between the four graphics. We also report in red the
last two numbers of the last line (i.e. named (final)) of the output_n.txt
file, which are explained in Section 8.6.1.

81

is very large (i.e 3.4), but the kriging seems to correctly take this into account
as the GOP is not very large and the profiles are smooth (see fig.2). Finaly,
we can also note from the results 1.txt file (below), that there are probably
not enough points at the top of the likelihood surface.

Migraine 0.5.5 (Built on Aug 16 2018 at 14:40:00)

blackbox, version 1.1.32 loaded

R code run on Wed May 20 14:33:06 2020

Data file: Soay.txt

Settings file: migraine.txt

Demographic model: OnePopVarSize

Canonical parameters: pGSM 2Nmu Tg/2N Dg/2N 2Nancmu

* N stands for number of gene copies,

i.e. 2N = 4 x [the number of diploid individuals] *

(!) Few points in upper 56.93 [ln(L) units] range:

only 466 points in this range.

(!) Only 55 points have a predicted likelihood

in the upper 1.921 [ln(L) units] range.

(this threshold corresponds to the 0.05 chi-square threshold with 1 df);

It is advised to compute more points in order to obtain good CIs.

*** Confidence intervals ***

95%-coverage confidence interval for 2Nmu : [0.13 -- 0.505]

95%-coverage confidence interval for Dg/2N : [0.243 -- 0.826]

95%-coverage confidence interval for 2Nancmu : [3.257 -- 12.75]

95%-coverage confidence interval for Nratio : [0.0225 -- 0.0956]

95%-coverage confidence interval for Dg*mu : [0.0406 -- 0.356]

*** Point estimates ***

pGSM 2Nmu Tg/2N Dg/2N 2Nancmu

0.5 0.282 0 0.47 6.062

N ratio: 0.0464

Dg*mu: 0.132

Normal ending.

At this stage, we know that (1) there are probably not enough points
with high likelihoods for the smoothing procedure, and (2) the analysis shows
high RMSpred values, indicative of a relatively large variance in the likeli-
hood estimation, as shown in the kriging diagnostic plot. However, most

82

importantly, we do not know if the number of runs per points was sufficient
or not to give reliable inferences (i.e. if this high variance causes some bias
in the analysis). The inferred parameters suggest that the past bottleneck
may not have been very strong (0.021 < Nratio < 0.091) and also not very
recent (0.48 < D < 0.84), a situation in which the variance in the likelihood
estimation should not be very large and thus not lead to erroneous inferences
(Leblois et al., 2014). We however choose to run three more analyses with
more and more runs per points (and four iterations to get enough points in
the top of the likelihood surface). All these changes should allows to get
more points with high likelihoods and a smaller variance in the likelihood
estimation.

To check the influence of the number of runs per points, we thus increased
step by step the value of nRunsPerPoints from 20 to 20,000 as shown in
Fig. 7. We can see that, as expected, increasing the number of runs per
points strongly decrease the likelihood estimation variance (as shown by the
kriging diagnostic plots and the RMSpred values). Unexpectedly, the GOP
value increases with the the number of runs per points and reaches a quite
high value of 62 for the last analysis, whereas the kriging diagnostic plot for
this last analysis seems better than for the previous ones. Most importantly,
we see that increasing the value of nRunsPerPoints also slightly shifts the
estimates of all parameters : (1) 2Nmu decreases, as well as its CIs lower
bound, and to a smaller extent its CIs higher bound; (2) Dg/2N and Dg∗mu
both increases, as well as their CIs lower bounds; and (3) 2Nancmu and its
CI lower bounds also increases. Those differences can reach up to a factor of
50 or 100% for some parameters between the first three analyses.

At this step, we do not know if we should consider more runs per points,
and we could have considered a fifth analysis with 200,000 runs per points
but it would have taken a very long time (e.g; many weeks on a desktop
computer, few days on a computer grid). We choose not to run it because
the last two analyses with 2,000 and 20,000 runs were highly concordant. The
only noticeable difference between these last two analyses is a much lower CI
bound for 2Nmu, which reach extremely low values around 0.0001. Such low
values are almost biologically unrealistic as a value of 10−5 corresponds to a
population size of a single individual when considering a very small mutation
rate for microsatellite markers of 2.5·10−6). We thus do not believe that a fifth
longer analyses would give quantitatively different and realistic estimates.

We thus showed that the analysis of this data set was sensitive to the num-
ber of runs per points considered. In other word, the inference results changed
with the decrease in the likelihood estimation variance due to considering an
increasing number of runs per points (Fig. 7). We could thus relatively clearly
see the influence of increasing the value of nRunsPerPoints. Other data sets

83

may even be more strongly affected the the variance in likelihood estimation
under time-inhomogeneous models, so that analyses with few runs per points
may lead to erroneous stable populations signals (personal observations).

We strongly believe that exploring different nRunsPerPoints values and
comparing the results may be the only solution to check the reliability of
a Migraine analysis under the OnePopVarSize and OnePopFounderFlush

models. Comparing runs with NRunsPerPoint= {200; 2, 000; 20, 000} should
generally give a good idea of the accuracy of the inferences (but considering
NRunsPerPoint= 20, 000 may lead to high computation times and using a
computer grid may be necessary).

All this argumentation is also valid for the OnePopFounderFlush model,
which may even be harder to run because it is a more complex time-inhomogeneous
model with an additional discrete change (i.e. the founder event) which will
often corresponds to a very strong and quick change in population size, and
thus a strong disequilibrium situation.

9.3 More examples

Check updates of this documentation for more examples!

10 Credits (code, grants, etc.)

Migraine uses R.J. Wagner’s implementation of the Mersenne Twister ran-
dom number generator. We thank the authors of the R packages used in this
or previous versions of Migraine; in particular part of the kriging code has
originally been derived from fields, C.J. Geyer offered feedback on rcdd,
and D. Sterratt on geometry.

Initial collaboration with Maria de Iorio and Bob Griffiths has been sup-
ported by a CNRS/Région Languedoc-Roussillon Ph. D. grant to R. Leblois.
Over 2009–2013, this work has been supported by the ANR EMILE coordi-
nated by J.-M. Cornuet and R. Vitalis. C. R. Beeravolu’s postdoc was funded
by the ANR IM-MODEL@Coral.Fish coordinated by Serge Planes and the
INRA department SPE “Santé des Plantes et Environnement”. C. Merle’s
PhD is jointly supported by the Cemeb and Numev “Labex’es”. Computa-
tions have been performed on our institutes’ grids (Institut des Sciences de
l’Évolution in Montpellier, and Centre de Biologie pour la Gestion des Popu-
lations), and additionally on CINES (www.cines.fr) up to 2007, on sleeping
computers of the University of Montpellier 2 for some time (thanks to V.
Ranwez, K. Belkhir, G. Dugas, A. Weisseldinger, A. Dehne-Garcia, R. Der-
nat, and specially to J.-B. Ferdy), and on a grid from the Museum National

84

www.cines.fr

d’Histoire Naturelle in Paris up to 2010.

11 Copyright

Migraine is free software under the GPL-compatible CeCill licence (see
http://www.cecill.info/index.en.html), and© F. Rousset and R. Leblois.
The Mersenne Twister code is © R. J. Wagner, and open source code under
the BSD Licence.

85

http://www.cecill.info/index.en.html

12 Kriging

12.1 What is kriging?

Kriging is a method of statistical prediction under a certain class of mod-
els, which may be used as a convenient data smoother. In the present case,
smoothing of estimated likelihood values is used to ease the exploration of
multidimensional likelihood surfaces and to tentatively locate likelihood max-
ima and confidence bounds from a limited amount of computation. Kriging
is used for smoothing in Migraine because it is not constraining with re-
spect to sampling design and dimension of parameter space, and because the
variance of estimation of likelihood can be taken in account.

There is a large literature on kriging but much of it is not very accessible.
Sections 2–6 of the chapter by Diggle et al. (2003) provide a reasonably short
and accessible introduction but more is required to understand and control
kriging computations in Migraine, so the following fills the gaps.

Kriging is better described as linear prediction for Gaussian processes. A
Gaussian process may be visualized as a spatial process generating a random
surface (or a random curve in one-dimensional space), from which any sample
of a finite number of points follows a Gaussian multivariate distribution with
a covariance matrix, describing the covariances among values in the different
points, depending on the spatial distance between the points. Then, the pre-
dictor with least square error of the function value in a given spatial position
is the expected value of realizations of the Gaussian process conditional on
observed values (i. e. among realizations that fit the observed values). Con-
ditional realizations and the conditional expectation are illustrated in Fig. 8.
Kriging is the computation of this predictor. Note that the prediction may
be above or below any of the observed values. In this figure, observed points
are assumed to be measured without error, so the prediction exactly fits the
points. A useful feature of Kriging is that measurement error can also be
included in the analysis. If there is a measurement error, a smooth predic-
tion can be produced from noisy data. This prediction will generally not fit
exactly the observed points.

In fitting likelihood points, “space” is not geographical but refers to the
parameter space of the statistical model (mutation and migration rates, etc.).
The “spatial” covariances are described by covariance between values in pairs
of points at distance d(.) from each over. In general d(.) is the Euclidian
distance in scaled coordinates, where the scale of each coordinate can be
estimated as described below.

In general, the assumptions of kriging (or of any other smoothing method)
will not be correct, and could be misleading in particular when the spatial

86

1 2 3 4 5 6 7

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

x

cz
e1

Figure 8: Prediction in Gaussian processes
Top panel: conditional on observed points (shown as dots for x =1 to 7), the
process can take different “values”, three of which are illustrated as the three
plain lines. The kriging prediction, shown as dotted line, is the expected
value of such conditional realizations, for each x value.

density of observed points is low. In principle, an assessment of the quality of
the prediction is given by predicting each observed point value on the basis
of other observed points values (cross-validation). In practice, this would be
quite computer-intensive and an approximation known as generalized cross-
validation is used.

12.2 Surface prediction

Kriging assumes that the realized values (yi) of the surface in points (xi)
at distance d(xi,xj) from each other are described by a covariance function
ρCov(d(xi,xj)). Given that Cov(0) = 1, ρ is the (pointwise) variance of the
Gaussian process (the variance in a given x for independent replicates of the
process). In addition, the value of the surface function is estimated with
some error assumed to follow a normal distribution with variance σ2.

In “simple” kriging one assumes that the process has a known, spatially
invariant mean (taken below to be zero, without loss of generality). In “ordi-
nary” kriging one estimates a spatially invariant mean. In “universal” kriging
this mean is allowed to vary across space. For simplicity of exposition, we
consider first simple kriging, then ordinary kriging (universal kriging will not
be further discussed). The predictor formulas given below are special case

87

of general prediction formulas for linear mixed models, known as generalized
least squares formulas.

12.2.1 The linear predictors

For “simple” kriging, the expected value of the surface in some point x0 is
given by the linear expression

ỹ(x0) = ρc(σ2I + ρC)−1y (9)

where y is the vector of observations (yi), c is the vector of expected co-
variances Cov(d(xi,x0)) between the realization of the Gaussian process in
the sampled points xi and the focal point x0, C is the matrix of expected
covariances among sampled points, and I is the identity matrix. Note that
this can simply be written as

ỹ(x0) = c(λI + C)−1y (10)

for λ = σ2/ρ. Many subsequent formulas may be written as function of λ
and not of σ and ρ separately.

This expression shows that the predictor is linear in observed y values
y(x0) = w.y, and is a complex function of focal coordinates x0. The term
c(σ2I + ρC)−1 defines a vector w of weights depending on the position of
the focal point relative to the observation, and on the covariance parameters,
but not on the observed values. As a function of focal point coordinates
x0, the predictor can also be understood as a sum of as many functions as
there are observations: consider the eigenvalues αi and left eigenvectors ei
of the matrix (σ2I + ρC)−1 (independent of the focal point). The vector
c ≡ c(x0) of expected covariances can be written as

∑
zi(x0)ei and then the

predictor is ρ
∑
zi(x0)αieiy =

∑
kizi(x0) where the coefficients ki ≡ ραieiy

are independent of x0.
When σ = 0, the predictor is an interpolator (i.e. predicted value in

observed x equals observed value). Otherwise it is a smoother. That can be
seen by noting that the vector of predicted values at sampled coordinates is
ρC(σ2I + ρC)−1y, which is simply y when σ = 0.

For ordinary kriging, one estimates the process mean as

µ̂ =
1A−1y

1A−11
(11)

where A ≡ σ2I + ρC, and the predictor is a simple generalization of the
previous one:

ỹ(x0) = µ̂+ ρcA−1(y − µ̂1). (12)

88

µ̂ converges to the observed mean when σ2 → ∞, as correlations between y
values in nearby x values become negligible. On the other hand, the predictor
is again an interpolator when σ2 = 0. Again this is a linear predictor, ỹ(x0) =
µ̂+ w.(y − 1µ̂).

Expositions of kriging often use different, though equivalent, expressions
for the predictors. A textbook computation of the ordinary kriging predictor,
which leads to the same result as above, is as c̃.Ã−1.ỹ, where each of the x̃’s
are augmented versions of the respective x terms: c̃ has an additional final
element with value 1, ỹ has an additional final element with value 0, and Ã
has one additional final row and final column with elements 1 except 0 on
the diagonal.

12.3 Covariances functions and covariance parameters

12.3.1 Covariance families

Likelihood surfaces are expected to be smooth, and the Matérn covariance
family is widely used to model such surfaces. There, the covariance is pro-
portional to

dνKν(d) (13)

where Kν is the Bessel function of second kind and order ν, and ν is the
“smoothness” parameter (the higher ν is, the smoother are the realized sur-
faces at a small scale).

12.3.2 The spatial scale parameters

The Euclidian distance d is a scaled distance; that is, each of the squared
distance coordinates ri is weighted by some “range” factor θi and d2 =∑

i(ri/θi)
2. Note that a low θi gives a high weight to distance in dimen-

sion i i.e to lower long-range correlations along this dimension. This tends
to produce estimated surfaces that form stripes orthogonal to the dimension
with lowest θi.

In Migraine, the spatial scale and smoothness parameters are by default
estimated by so-called generalized cross validation, described below.

12.3.3 Minimizing the prediction error

One can take as estimates of the covariance parameters those values that
generate good predictions in each point from observations in all other points.
This is the principle of cross-validation. One could thus try to minimize an
average measure of prediction error across points. But this would lead to

89

over-fitting, i.e. choosing covariance parameters that yield very good predic-
tion of the observed points but would yield comparatively poorer prediction
of unobserved points. Keep in mind that if λ > 0, predicting exactly the ob-
served points (interpolation) will be different from optimal prediction which
should have some smoothing component (hence estimated λ should be > 0).9

There are two complementary means of avoiding over-fitting: obtaining some
direct information on σ, and penalizing those predictors that somehow pre-
dict in any focal point from too many sampled points.

The first mean can be achieved by obtaining more than one realization
of the process in some focal points. This appears essential for the quality
of the final results. By default Migraine will compute two estimates of the
likelihood for (roughly) 1/30 of all sampled points.

The second mean is achieved by using a penalized least-square criterion
which associates with each value of λ an effective degree of freedom (also func-
tion of the C covariance matrix) and higher degrees of freedom are penalized
(this is analogous to model selection procedures where explanatory models
accounting for more degrees of freedom are penalized). A widely used, and
computationally convenient penalized least-square measures is considered in
so-called “generalized” cross validation (GCV) (Golub et al., 1979), of which
we only give a glimpse here. The GCV criterion compares an heuristic esti-
mate SSEpred of prediction error to an heuristic concept of residual degrees
of freedom dfres of the predictor:

GCVpred =
SSEpred

dfres
. (16)

Here

The residual degrees of freedom are computed as n−
∑n

i=1(1 +λ/di) where
the sum is over the eigenvalues di of a matrix deduced from the n× n
C matrix. This sum is viewed as the predictor’s effective degrees of
freedom, and is at most n, when λ = 0. Then the denominator vanishes.
the numerator also vanishes in that case;

9Note that the prediction errors in every point from all points can be written

e ≡µ̂1 + C(λI + C)−1(y − µ̂1)− y (14)

=[C(λI + C)−1 − I](y − µ̂1) = (λI + C)−1(y − µ̂1) (15)

The mean-squared prediction error across points will depend, as the previous expressions,
only on λ and not on σ and ρ separately. Therefore, it will not be possible to estimate
the two parameters separately. Separate estimation will be possible if replicates y values
are observed in given x values and the criterion of fit is not simply a mean square over y
values but distinguishes in some way the replicate y values.

90

SSEpred is itself computed as a weighted square error estimate SSE1 divided
by dfres so that GCVpred = SSE1

df2res
. The weights in MSE1 give more

importance to prediction errors in coordinates points surrounded by
relatively many close points. This is desirable as these points should
be better predicted;

SSEpred is only an estimate of the prediction error of the kriged points, and
this combines the prediction error of the likelihood surface by kriging and the
estimation error SSE2 of the likelihood given its true value, estimated from
those sampled coordinates where replicate y values were computed. The two
errors are combined in the GCV criterion

GCV =
MSE1 + MSE2

df2
(17)

where MSE2 is independent of the covariances parameters being estimated
and will in particular strongly penalize low values of λ.

For replicate y values, kriging is performed only on their means, and the
existence of replicates is taken into account only through a weight given to
these means: the variance of replicate y values is not taken into account in the
kriging computation and in particular in the MSE1 and in the denominator
of the GCV criterion. Thus, again, kriging computations depend only on λ.
But the choice of λ through the GCV criterion depends on the variance of y
values through MSE2.

One practical problem with the above computation is that the C matrix
may be ill-conditioned so that 1/di is numerically ill-behaved. This occurs
most easily when (i) the number of points is large; (ii) the covariance func-
tion corresponds to smooth surfaces, and λ approaches 0; (iii) some sampled
points are close to each other.

91

Bibliography

Cornuet, J. M. & Beaumont, M. A., 2007. A note on the accuracy of PAC-
likelihood inference with microsatellite data. Theor. Popul. Biol. 71: 12–19.

Cox, D. R., 2006. Principles of statistical inference. Cambridge Univ. Press,
Cambridge, UK.

Cox, D. R. & Hinkley, D. V., 1974. Theoretical statistics. Chapman & Hall,
London.

de Iorio, M. & Griffiths, R. C., 2004a. Importance sampling on coalescent
histories. Adv. appl. Prob. 36: 417–433.

de Iorio, M. & Griffiths, R. C., 2004b. Importance sampling on coalescent
histories. II. Subdivided population models. Adv. appl. Prob. 36: 434–454.

de Iorio, M., Griffiths, R. C., Leblois, R. & Rousset, F., 2005. Stepwise mu-
tation likelihood computation by sequential importance sampling in sub-
divided population models. Theor. Popul. Biol. 68: 41–53.

Diggle, P. J., Ribeiro, P. J. & Christensen, O. F., 2003. An introduction to
model-based geostatistics. In: Spatial statistics and computational methods
(J. Møller, ed.), pp. 43–86. Springer Verlag, New York, New York.

Golub, G. H., Heath, M. & Wahba, G., 1979. Generalized cross-validation as
a method for choosing a good ridge parameter. Technometrics 21: 215–223.

Gusfield, D., 1991. Efficient algorithms for inferring evolutionary trees. Net-
works 21: 19–28.

Hobolth, A., Uyenoyama, M. K. & Wiuf, C., 2008. Importance Sampling for
the Infinite Sites Model. Statistical Applications in Genetics and Molecular
Biology 7: 32.

Hudson, R. R. & Kaplan, N. L., 1985. Statistical properties of the number
of recombination events in the history of a sample of DNA sequences.
Genetics 111: 147–164.

Kimura, M., 1969. The number of heterozygous nucleotide sites maintained in
a finite population due to steady flux of mutations. Genetics 61: 893–903.

Leblois, R., Pudlo, P., Néron, J., Bertaux, F., Beeravolu, C. R., Vitalis, R.
& Rousset, F., 2014. Maximum likelihood inference of population size
contractions from microsatellite data. Mol. Biol. Evol. 31: 2805–2823.

92

Li, N. & Stephens, M., 2003. Modeling linkage disequilibrium and identi-
fying recombination hotspots using single-nucleotide polymorphism data.
Genetics 165: 2213–2233.

Liu, J. S., 2008. Monte Carlo strategies in scientific computing. Springer
Science & Business Media.

Liu, J. S., Chen, R. & Logvinenko, T., 2001. A theoretical framework for
sequential importance sampling with resampling. In: Sequential Monte
Carlo methods in practice (A. Doucet, N. de Freitas & N. Gordon, eds.),
Statistics for Engineering and Information Science, pp. 225–246. Springer
New York.

Merle, C., Leblois, R., Rousset, F. & Pudlo, P., 2017. Resampling: an
improvement of Importance Sampling in varying population size models.
Theoretical Population Biology 114: 70–87.

R Core Team, 2013. R: a language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria.

Rousset, F., 1997. Genetic differentiation and estimation of gene flow from
F -statistics under isolation by distance. Genetics 145: 1219–1228.

Rousset, F., 2008. Genepop’007: a complete reimplementation of the
Genepop software for Windows and Linux. Mol. Ecol. Resources 8: 103–
106.

Rousset, F., Beeravolu, C. R. & Leblois, R., 2018. Likelihood analysis of pop-
ulation genetic data under coalescent models: computational and inferen-
tial aspects. Journal de la société Française de Statistiques 159: 142–166.

Rousset, F. & Leblois, R., 2007. Likelihood and approximate likelihood anal-
yses of genetic structure in a linear habitat: performance and robustness
to model mis-specification. Mol. Biol. Evol. 24: 2730–2745.

Rousset, F. & Leblois, R., 2012. Likelihood-based inferences under isolation
by distance: two-dimensional habitats and confidence intervals. Molecular
Biology and evolution 29: 957–973.

Stephens, M. & Donnelly, P., 2000. Inference in molecular population genetics
(with discussion). J. R. Stat. Soc. 62: 605–655.

Watts, P. C., Rousset, F., Saccheri, I. J., Leblois, R., Kemp, S. J. & Thomp-
son, D. J., 2007. Compatible genetic and ecological estimates of dispersal

93

rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations:
analysis of ‘neighbourhood size’ using a more precise estimator. Mol. Ecol.
16: 737–751.

Zimmerman, D. L., 2006. Optimal network design for spatial prediction,
covariance parameter estimation, and empirical prediction. Environmetrics
17: 635–652.

94

Index

σ2
cond (conditional σ2), 29, 30, 60

1DCI, see oneDimCI

1DProfiles, 66
2DProfiles, 67

addReplicates, 62
Algorithms

Hobolth proposal, 53
Resampling (SISR), 62

AllelicBounds, 54
Apple Mac OS X, 7
AxialBinNbr, 39, see GeoBinNbr

Canonical parameter order, 36
CICoverageLevel, 65
CIErrorLevel, 65
CmdLineFileName, 16
Confidence intervals, 18, 65
Confidence regions, 65

fitted parameters, 66
plots, 66, 67
profiles, 18, 66, 67

Coordinates, see Spatial coordinates
CoreNbrForR, 73
CovFnParam, 68
Cross-validation, 87
CrossValidationPointsNumber, 69

Demographic model
2 populations, 2pop, 35
island, 32
Isolation by distance, IBD, 29
single population with variable size,

OnePopFounderFlush, 33
single population with variable size,

OnePopVarSize, 33
single population, OnePop, 32
stepping-stone, 32

DemographicModel, 52
designRetain, 24, 69

Diploid data
meaning of N , 28

Environment variables, 72
EstimationSeed, 64
Extrapolation, 22

in plots, 23
extraScale, 67

Files
input and output, 16
output_n.txt, 73

FixedSmoothness, 23, 69, 76
fixedSmoothnessfixedSmoothness, 68

GCVdesignRetain, 69
GCVptNbr, see

CrossValidationPointsNumber

GenepopFileName, 50
GenepopIndividualLabels, 51
GenepopRootFileName, 51, 70
GeoBinNbr, 41, 42
GeoBinWidth, 42
Geometry, 52
GeoUnit, 43
GivenK, 54
graphicFormat, 67
graphicPars, 67
gridSteps, 19, 42, 67
GSM, 28, 53

habitatPars, 39
HobolthProposal, 53

Input files
Genepop format, 37

multiple samples, 71
NEXUS format, 37
Nexus format

multiple samples, 71
InputCheck, 25

95

Island model, 29, 32, 40
specification, 41

ISM, 28, 53
Iterative analyses, 17

Job, 71
JobMax, 71
JobMin, 71

KAM, 53
Kriging, 21, 86

memory, 26
kriglength, 26
KrigLoci, 64
krigmax, 26
KrigOnly, 57
krigoverlap, 26
KrigScale, 68
KrigSpace, 22, 68

Likelihood
multiple maxima, 23
profile, 18

Loci, 51
lociPerModel, 55
Locus

selection of, see
KrigLoci

Logarithmic scale, see
SamplingScale, see also
KrigScale

LowerBound
parMinima, 59

LowerBound, 59

maxSmoothness, 69
Memory, see Kriging, memory
minSmoothness, 69
Monomorphic loci, see Loci and GivenK

settings
Mutation models

GSM, 28, 53

ISM, 28, 53
KAM, 27, 53
SMM, 27, 53

MutationalModel, 53

Neighborhood size, 18, 29
NextBoundsLevel, 56
NexusFileName, 51
NexusRootFileName, 51, 70
NexusTaxonLabels, 51
NRunsPerPoint, 23, 24, 61

oneDimCI, 65
Options, see Settings

ParameterValue, 61
parMaxima, 59
parMinima, 59
Pause, 70
PIM, 53
ploidy, 28
plotRange, 67
Plots

profiles, 19, 66, 67
Plots, 42, 65
pointIndex, 58
pointmax, 58
pointmin, 58
PointNumber, 58
Poor graphics

likelihood surface, 25
profile likelihood surface, 25

population size ratio, 18
Profile likelihood, see

Likelihood, profile
PromptForHyperSegSites, 55
PSONMax, 41
PSONMin, 41
ptSamplingSeed, 24, 34, 58

R code
non-critical settings, 26

96

ReadPoints, 57
replicatedPoints, 61
ResolveForPerfectPhylogeny, 55
Return code, 75

SamplesPosOnArray, 41
Sampling

parameter points, 20
SamplingScale, 20, 60
SamplingSpace, 22, 59
Settings

Default values, 48
recommended, 24
syntax

Booleans syntax, 49
Iterations syntax, 49
Locus vector syntax (multiple

markers), 50
SettingsFile, 48
SISR_Alpha, 63
SISR_Beta, 63
SISR_CoaEventsOnly, 63
SISR_ESSMinDecrease, 63
SISR_EventsNbBetweenResampling, 63
skipLoci, 51
SMM, 27, 53
SMMstepSizes, 54
Spatial coordinates, 39
StatisticSequence, 62
Stratified random sampling, see

Sampling, parameter points
subsetPointls, 64

testPoint, 64
TimeScale, 52
Troubleshooting, 24

UpperBound
parMaxima, 59

UpperBound, 59
UsePCL_SISR, 62

VarSizeFunction, 52

writeAdHocFiles, 51
WriteRKrig, 57
WriteROnly, 57
WriteSequence, 21, 24, 56

97

	Quick start
	Requirements
	Installation
	Migraine
	The R statistical software

	Using Migraine
	Minimal example for isolation by distance
	Minimal example for the OnePopVarSize model
	Going further into the results of those minimal worked examples
	The settings file and the command line

	Output and file system
	Iterative analyses

	Likelihood estimation using Migraine: background
	Confidence regions based on (profile) likelihood ratios
	Accuracy of estimation of likelihood in each parameter point
	Accuracy of likelihood surface prediction
	Number and location of points
	Reliability of the smoothing (kriging) step
	Parameter spaces and extrapolation

	Local maxima of the fitted likelihood surface
	Hints for good results
	Troubleshooting
	Likelihood computations do not start
	Lost input files
	R code complains about suspect replicate values in the input file
	Likelihood surface is not smooth
	Negative likelihood ratio statistic
	R does not have enough memory
	The results file warns that an estimate is at the edge of the parameter space

	Mutation models
	K-alleles model
	Strict stepwise mutation model (SMM)
	Generalized stepwise mutation model (GSM)
	Infinite Sites mutation model (ISM)

	Demographic models
	Isolation by distance with geometric dispersal
	Hints for good results

	Nearest-neighbor stepping stone dispersal
	Island model
	Panmictic population at equilibrium
	Hints for good results

	Panmictic population with variable size
	Hints for good results

	2 populations with migration
	Hints for good results

	Canonical order of parameters
	Data input
	Input file format
	Genepop
	NEXUS

	Spatial information (isolation by distance)
	Preferred method
	Other methods (linear habitat only)

	The graphic output for the different models
	Isolation by distance
	Single panmictic population
	Population with variable size: OnePopVarSize and OnePopFounderFlush
	2 populations with migration

	Migraine settings
	General features of settings
	The settings file
	The command line
	Order of settings
	The Iterations and Boolean syntaxes
	The locus vector syntax for analyses with multiple markers

	Settings by theme
	Data input
	Spatial information
	Demographic models
	Mutation models
	Control of iterative computations
	Control of sampled points
	Control of likelihood estimation
	Options for likelihood ratio tests and one-dimensional confidence intervals
	Control of kriging
	Interaction with the system

	Multiple data sets and multiple Migraine runs
	Multiple and concurrent runs of Migraine
	Cluster usage: several processes writing in the same directory
	Linux PC cluster
	Migraine command line argument
	Passing environment variables

	Parallel computation of point batches with a bash script on Linux computers and clusters
	Parallel computation of profiles in R on any PC
	The output_n.txt file
	General format
	Return code is not 0

	More examples
	Linear habitat: choosing a parameter space
	OnePopVarSize and OnePopFounderFlush: choosing the good number of runs per points
	More examples

	Credits (code, grants, etc.)
	Copyright
	Kriging
	What is kriging?
	Surface prediction
	The linear predictors

	Covariances functions and covariance parameters
	Covariance families
	The spatial scale parameters
	Minimizing the prediction error

	Bibliography
	Index

