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Markov model

We model the evolution of each position (site) of a sequence
independently

The state X (t) of a site at time t depends only on the current state:

Pr(X (t) = A) = Pr(X (t0) = A)× Pr(A→ A)

+ Pr(X (t0) = C )× Pr(C → A)

+ Pr(X (t0) = G )× Pr(G → A)

+ Pr(X (t0) = T )× Pr(T → A) (1)

Similar equations can be written for Pr(X (t) = C ), Pr(X (t) = G )
and Pr(X (t) = T ).
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Matrix notation

We can gather all equations in a more compact form. We note

x(t) =
(
X (t) = A X (t) = C X (t) = G X (t) = T

)

And we can write

x(t) = x(t0)×


pAA pAC pAG pAT
pCA pCC pCG pCT
pGA pGC pGG pGT
pTA pTC pTG pTT


︸ ︷︷ ︸

P

where pij = Pr(i → j).
‘P ’ defines the substitution process.
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A few more considerations

We have
∀i ,
∑
j

pi ,j = 1

that is

Pr(A→ A) + Pr(A→ C ) + Pr(A→ G ) + Pr(A→ T ) = 1

If we assume that all types of mutations are equi-probable (Jukes
and Cantor, 1969), we can simplify:

P(JC69) =


1− 3r r r r

r 1− 3r r r
r r 1− 3r r
r r r 1− 3r


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Continuous time

We assume that the process does not change over time, so we can write
the equations for any time t:

t = t0 + dt0, r = α · dt0

x(t0 + dt0) = x(t0)×


1− 3αdt0 αdt0 αdt0 αdt0
αdt0 1− 3αdt0 αdt0 αdt0
αdt0 αdt0 1− 3αdt0 αdt0
αdt0 αdt0 αdt 1− 3αdt0


x(t0 + dt0) = x(t0) + x(t0) · Qdt0
x(t0 + dt0)− x(t0)

dt0
= x(t0) · Q
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Continuous time

We obtain a differential equation by having dt0 → 0:
∂x(t)

∂t
= Q · x(t)

Q is called the generator of the substitution process, and we have

Q(JC69) =


−3α α α α
α −3α α α
α α −3α α
α α α −3α


with

∀i ,
∑
j

qi ,j = 0

This resolves into
x(t) = x(t0) · exp(Q · t)
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Conclusion
We can compute the probability that a certain sequence (x(t0))
transforms into another given sequence (x(t)) after a known time (t) and
given a certain substitution process specified by its generator (Q).

So what???
If we have two sequences and Q , we can compute t which maximizes this
probability → unbiased estimate of the divergence between the two
sequences!
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Evolution along a tree
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Common nucleotide substitution models

Model Authors Parameters
JC69 Jukes Cantor 1 substitution rate
K80 Kimura 1 transition rate, 1 transversion rate
K81 Kimura 1 transition rate, 2 transversion rates
F81 =
TN84

Felsenstein,
Tajima et Nei

1 substitution rate and 3 frequencies

HKY85 Hasegawa,
Kishino et Yano

1 transition rate, 1 transversion rate and 3
frequencies

TN93 Tamura et Nei 1 transition rate, 2 transversion rates and 3
frequencies

Z94 Zharkikh 6 substitution rates
T92 Tamura 1 transition rate, 1 transversion rate and 1 GC

rate
GTR “General time re-

versible”
6 substitution rate and 3 frequencies
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Common nucleotide substitution models

JC69
1 parameter

K80
2 parameters

K81
3 parameters

Z94
6 parameters

πA = πU
= πG = πC

TN84
4 parameters

HKY85
5 parameters

TN93
6 parameters

GTR
9 parameters

πA , πU , πG , πC

T92
3 parameters

πA = πU
πG = πC

v1 = v2 = v3 = v4
s1 = s2

v1 = v4
v2 = v3
s1 = s2

v1, v2, v3, v4
s1, s2
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Probability of an alignment

Site independence

If sites evolve independently:

Pr(D|Θ) =
∏
i

Pr(Di |Θ)

L =
∏
i

Li

Parameters

Branch lengths
Entries in the substitution matrix
Tree topology
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Maximum likelihood

Maximum-likelihood estimation (MLE)

MLE is a method of estimating the parameters of a statistical model. For
a given dataset and underlying statistical model, the maximum likelihood
estimator corresponds to the set of values of the model parameters that
maximizes the likelihood function. (The method was initially proposed by
statistician Ronald Aylmer Fisher in 1922.)

General statistical framework
Allows to perform model comparisons
Allows to get confidence intervals of estimates
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Modelling the evolution of a codon sequence alignment

ATG TGC CGT AAC TAT CCT ...

ATG TGG CGT CAC TAT CCT ...

ATG CGG CGT CAC TAG GCT ...

ATG CGT CGT CAC TAA GCT ...

ATG TGG CGT CGC TAT CCT ...

We assume that all columns (sites) are independent
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Modelling the evolution on a branch

Mutations can occur at any time, with a given rate

The probability of each type of mutation is given by a matrix:

ACGT ARNDCEQGHI... AAA AAC AAG AAT ACA ...

4× 4

20× 20

61× 61
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Models for codon evolution

A codon model would have 61× 61 = 3721 parameters (this is
typically more than the actual data!)

We need simplifications. . .

We consider that two mutations cannot occur at the same time, so
codon mutation involving more than one change are discarded, this
leaves 526 parameters
We consider only 2 types of mutations: synonymous and
non-synonymous. The ratio of the two is noted omega
We allow nucleotide transitions and transversions to occur at a
distinct rate. The ratio of the two is noted kappa

We can therefore express all mutation probabilities with only two
parameters
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We consider only 2 types of mutations: synonymous and
non-synonymous. The ratio of the two is noted omega
We allow nucleotide transitions and transversions to occur at a
distinct rate. The ratio of the two is noted kappa

We can therefore express all mutation probabilities with only two
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Models for codon evolution

Muse and Gaut (1994), Goldman and Yang (1994)

Instantaneous substitution rate

qij =


0 if i and j differ at more than one position
πj if i and j differ by one synonymous transversion
κ · πj if i and j differ by one synonymous transition
ω · πj if i and j differ by one nonsynonymous transversion
ω · κ · πj if i and j differ by one nonsynonymous transition
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Models for codon evolution
On the πj . . .

61 codon frequencies: F61 model, 61 parameters)

Consider only the frequencies of A, T, C and G, and deduce the
frequencies of all codons: F1X4 model, 3 parameters
Consider the frequencies of A, T, C and G, independently at the
three codon positions: F3X4 model, 9 parameters
Consider all codon equally frequent: F0 model, 0 parameter

- Frequencies can be estimated, or fixed to their observed values
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Likelihood of an alignment

With this framework we can compute the probability of a data set given a
mutation model by:

1 Computing the probability for one branch for one site (requires the
exponential of the mutation matrix)

2 Multiplying all probabilities for all branches for one site
3 Summing over all possible ancestral states
4 Multiplying for all sites in the alignment
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Site heterogeneity

+ Model assumes homogeneous selective pressure along the alignment.
How to account for heterogeneity?

We consider several possible scenarios for each site:
ω1 = 1 neutral evolution
ω0 < 1 negative selection
ω2 > 1 positive selection

Each site can therefore “chose” between several omegas
The likelihood of site i becomes

Li =
∑
ω

Li (ω)× Pr(ω)

where Li (ω) is the likelihood for site i for a given value of ω, and
Pr(ω) is the probability of this given ω (the frequency of sites in the
alignment which evolve with this particular ω).

Dutheil JY (MPI Evol Bio) Models of Sequence Evolution with Selection June 18th 2015 19 / 21



Site heterogeneity

+ Model assumes homogeneous selective pressure along the alignment.
How to account for heterogeneity?

We consider several possible scenarios for each site:
ω1 = 1 neutral evolution
ω0 < 1 negative selection
ω2 > 1 positive selection

Each site can therefore “chose” between several omegas
The likelihood of site i becomes

Li =
∑
ω

Li (ω)× Pr(ω)

where Li (ω) is the likelihood for site i for a given value of ω, and
Pr(ω) is the probability of this given ω (the frequency of sites in the
alignment which evolve with this particular ω).

Dutheil JY (MPI Evol Bio) Models of Sequence Evolution with Selection June 18th 2015 19 / 21



Site heterogeneity

+ Model assumes homogeneous selective pressure along the alignment.
How to account for heterogeneity?

We consider several possible scenarios for each site:
ω1 = 1 neutral evolution
ω0 < 1 negative selection
ω2 > 1 positive selection

Each site can therefore “chose” between several omegas

The likelihood of site i becomes

Li =
∑
ω

Li (ω)× Pr(ω)

where Li (ω) is the likelihood for site i for a given value of ω, and
Pr(ω) is the probability of this given ω (the frequency of sites in the
alignment which evolve with this particular ω).

Dutheil JY (MPI Evol Bio) Models of Sequence Evolution with Selection June 18th 2015 19 / 21



Site heterogeneity

+ Model assumes homogeneous selective pressure along the alignment.
How to account for heterogeneity?

We consider several possible scenarios for each site:
ω1 = 1 neutral evolution
ω0 < 1 negative selection
ω2 > 1 positive selection

Each site can therefore “chose” between several omegas
The likelihood of site i becomes

Li =
∑
ω

Li (ω)× Pr(ω)

where Li (ω) is the likelihood for site i for a given value of ω, and
Pr(ω) is the probability of this given ω (the frequency of sites in the
alignment which evolve with this particular ω).

Dutheil JY (MPI Evol Bio) Models of Sequence Evolution with Selection June 18th 2015 19 / 21



Some site-heterogeneous codon models
Yang, Nielsen, Goldman and Pedersen (2000)

M0 (one ratio) all positions identical, one parameter ω

M1a (variable selective pressure) 1− p0 positions with ω = 1, p0
positions with ω < 1

M2a (variable selective pressure with positive selection) some positions
with ω = 1, others with ω < 1 and some with ω > 1

M7 (variable selective pressure) some positions with ω 	 β(p, q), with
β(p, q) being the beta distribution between 0 and 1

M8 (variable selective pressure) some positions with ω 	 β(p, q) and
some with ω > 1

M9 (variable selective pressure) some positions with ω 	 β(p, q) and
some with ω 	 Γ(a, b) + 1, where Γ(a, b) + 1 is the gamma
distribution between 1 and + inf .
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Model comparison

+ Compare a model with selection to a neutral model

1 Fit both models (e.g. M1a and M2a, M7 and M8 or M9)

2 Perform a likelihood ration test (LRT): compute

S = 2× ln(L1/L0) = 2× (ln(L1)− ln(L0))

where L1 is the likelihood of the model with selection, and L0 the
likelihood of the neutral model.

3 S 	 χ(n1− n0), where n1 and n2 are the number of parameters of
the model with and without selection, respectively. For M2a-M1a
and M8-M7, n1− n0 = 2, for M9−M7, n1− n0 = 3.

4 If significant, use a Bayesian approach to identify positions where
M2a/M8/M9 has a higher posterior probability than M1a/M7
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