
06/28/17
What place for the containers in the
HPC world ?

Rémy Dernat – CNRS - ISE-M (CNRS/UM/IRD) /
MBB platform LabEx CeMEB

2

Containers

• Use some (~recent) “isolate” Linux capabilities:
– chroot,
– cgroups (kernel > 2.6.24, 2008),
– namespaces,
– overlayFS (kernel 3.18, Dec. 2014).

• + Possible Namespaces:
– mnt (mount points, filesystems) (kernel >= 2.4.19, 2002)

– pid (processes) (Kernel >= 2.6.24, Jan. 2008)

– net (network stack) (Kernel >= 2.6.24, Jan. 2008)

– ipc (InterProcess Communication) (Kernel >= 2.6.19, Oct. 2006)

– uts (hostname / domainname) (Kernel >= 2.6.19, Oct. 2006)

– user (UIDs/GIDs) (complete in kernel >= 3.8, Feb. 2013)

– Cgroup Namespace (Kernel >= 4.6 May 2016)

Rémy Dernat – CNRS - ISE-M

3

Docker vs the rest of the world

• Some containers techs:
– BSD Jails
– Solaris Zones
– OpenVZ
– LXC/LXD
– Docker
– rkt
– Systemd-nspawn

• In the HPC world, there are some initiatives but there are still rare.

Rémy Dernat – CNRS - ISE-M

4

Containers in production environments

• 1. Mainly used in cloud environments (Amazon, Google cloud...)
• 2. Moderate/weakly used in standards datacenters:

– Proxmox and OpenVZ / LXC containers
– Continuous development/integration/delivery/testing/deployment
– Except for some modern datacenters, but generally, these people

are also using the cloud (point 1).

• 3. Poor usage in the HPC world (until… And except for... - will see it
later...)

Rémy Dernat – CNRS - ISE-M

5

Why using containers in the HPC world ?

• Mobility: bring your working environment to the unfriendly HPC
environment to benefit its hardware performances.

• Develop locally, build container, deploy at scale.
Continuous Integration/Delivery/Deployment.
DevOps aim: conciliates Ops and Devs.

• Less headaches for the HPC sysadmin (It is easy !), except for
some containers techs/users that need additional security controls.
→ transfer partially the software stack responsibility to the user.

It leverages the user independence and its linux skills. To achieve
this, the administrator should only give some good practices and
recipes to help the user.

Rémy Dernat – CNRS - ISE-M

6

Why using containers in the HPC world ?

• Reproducible Research ?
Recipe + Versioning + packaging + publishing/sharing

Reproducibility is the ability of an entire analysis of an experiment
or study to be duplicated, either by the same researcher or by
someone else working independently, whereas reproducing an
experiment is called replicating it. Reproducibility and replicability
together are among the main principles of the scientific method.
(source: Wikipedia)

Rémy Dernat – CNRS - ISE-M

7

Docker and its environment vs HPC environment

• 2 possible approaches :
– Containers orchestration with a job scheduler inside each

container (runner or master).
– Classical Job scheduler which distribute containers.

• Docker orchestrators: Swarm, YARN, Mesos DC/OS, Kubernetes,
etc...
vs HPC Job Scheduler (SGE, Torque, SLURM, etc…)

Oriented Docker orchestrators hardly integrate within existing HPC
environments with another job scheduler.

Rémy Dernat – CNRS - ISE-M

8

Docker and its environment vs HPC environment

• Not HPC oriented. Created for the clouds:
– Micro-services, not “jobs”...
– The orchestrators distribute widely the containers without a true

inquiry about the resources or scheduling and fair sharing.
– Docker has no HPC specific features. It does not benefit the best

of hardware/system performances (filesystem, network, specific
accelerators (GPU, Xeon Phi...)).

Rémy Dernat – CNRS - ISE-M

9

Docker and its environment vs HPC environment - Security

• Not intended for multi-user use on the host(s)
– Obvious security issues; the docker daemon is running under

root.
Example :
$ docker run ­ti ­v /:/tmp/_root_host test_remy bash

rm ­rf /tmp/_root_host/

Rémy Dernat – CNRS - ISE-M

10

Docker and its environment vs HPC environment - Security

• Almost no certified images and secure images.
– “30% of the images on the Docker Registry contain

vulnerabilities”
BanyanBlog – 2015

• How to secure it ?
– Docker-ee (1), udocker (2), Moby project + LinuxKit,...

• Image Analysis : Clair (CoreOS) (6), Docker
Security Scanning, quay.io security analyses, ... ?

– HPC focus: Shifter (3), Singularity (4), CharlieCloud (5)…

1. https://www.docker.com/enterprise-edition

2. https://github.com/indigo-dc/udocker

3. https://www.nersc.gov/research-and-development/user-defined-images/

4. http://singularity.lbl.gov/

5. https://github.com/hpc/charliecloud

6. https://coreos.com/clair

Rémy Dernat – CNRS - ISE-M

https://www.docker.com/enterprise-edition
https://github.com/indigo-dc/udocker
https://www.nersc.gov/research-and-development/user-defined-images/
http://singularity.lbl.gov/
https://github.com/hpc/charliecloud
https://coreos.com/clair

11

Comparison features table of Docker-like secure techs

Features Docker-ee ($) udocker Shifter Singularity Charliecloud

Need a
daemon

Yes No No No No

Permissions
management

Yes Not needed Not needed Not needed Not needed

cgroups Yes No Yes No No

Analyze
images
content

Yes (advanced
edition ($$))

No Yes / Partial No No

Access to the
host devices

Yes (--device
option)

No No Yes Yes

True mapping
of UIDs

No Not for root Not for root Yes No

All can be
done from user

No (The admin
needs to set
permissions)

Yes Yes (but it
needs a
gateway)

Yes (except
bootstrap
which requires
root rights (*))

No

HPC ready No Yes (with some
limitations)

Yes (and only
for it (**))

Yes Yes

(*) Can be done on a local machine and then transferred to the
executing machine.
(**) it needs the corresponding infrastructure.

Rémy Dernat – CNRS - ISE-M

12

The containers in the HPC landscape

• Custom scripts
• Some initiatives :

– Tight Integration with docker in HTCondor (Docker Universe
Applications)

– Slurm cgroups
– The Dockstore
– cHPC
– Shifter
– Charliecloud
– Singularity

Rémy Dernat – CNRS - ISE-M

13

HTCondor : Docker Universe Applications

• Tight integration of Docker containers with HTCondor.
– Pull the container from a registry,
– mount a scratch directory within the container which contains every

input/ouput files,
– Execute a line defined in the submit script or the command defined

by the Dockerfile.
– Container is removed at the end of the job (regardless the final

state of the job).

universe = docker
 docker_image = debian
 executable = /bin/cat
 arguments = /etc/hosts
 should_transfer_files = YES
 when_to_transfer_output = ON_EXIT
 output = out.$(Process)
 error = err.$(Process)
 log = log.$(Process)
 request_memory = 100M
 queue 1

Rémy Dernat – CNRS - ISE-M

14

The Dockstore

• Based on Docker, and a RESTful API with a java tool
https://dockstore.org/

• Allows us to use almost pretty certified images focused on a
science aim (for bioinfo purpose, see also BioShaDock /
bioboxes ...).

• ICGC PanCancer Analysis of Whole Genomes cancer genomics
project
« At its peak, 14 cloud and HPC environments were utilized with
over 16,000 cores in total, resulting in a cumulative dataset of
nearly 1 Petabyte in size. »

Rémy Dernat – CNRS - ISE-M

https://dockstore.org/

15

The Dockstore

• Defines some standards formated in WDL/CWL (YAML)
– Describes the container, who is the maintainer, what it does, its IOs

(it is possible to describe an entire workflow), how to use it, and
what resources are needed for its execution.

• Needs the Docker daemon on all executing nodes.

Rémy Dernat – CNRS - ISE-M

16

cHPC

Rémy Dernat – CNRS - ISE-M

Weidner, O., Atkinson, M., Barker, A., & Filgueira Vicente, R. (2016, June). Rethinking High Performance Computing Platforms: Challenges,
Opportunities and Recommendations. In Proceedings of the ACM International Workshop on Data-Intensive Distributed Computing (pp. 19-
26). ACM.

17

Shifter

Rémy Dernat – CNRS - ISE-M

Jacobsen, D. M., & Canon, R. S. (2015). Contain this, unleashing docker for hpc. Proceedings of the Cray User Group.

18

Shifter

• Purpose: anyway, everybody use Docker(…); How can we secure
it to integrate these containers in our HPC cluster ?

• Developed at NERSC (National Energy Research Scientific
Computing Center)

• A bit less complex than cHPC, but it is still a bit complex (…).
Shitfer requires a gateway to convert the Docker image to a
standard linux file (typically an ext4 image file after extracting
Docker layers to a tarball). The gateway analyzes the content of the
image to check any security issue.

Rémy Dernat – CNRS - ISE-M

19

Shifter

• Then, the gateway distributes the image over the nodes. The
executing nodes mount it with a loop device and access to other
paths (eg /output) with bind-mounts.

• The final image is mounted read-only for most of the paths and
some operations are forbidden (setuid...).

• Works with SLURM, Torque.

Rémy Dernat – CNRS - ISE-M

20

Charliecloud

• https://hpc.github.io/charliecloud/
• Developed at Los Alamos National Laboratory
• Uses only 2 namespaces : mount and user
• Based on Docker for the container creation (Dockerfile),
• A little C+bash code (~500 lines) + bind mounts to execute the

containers,
• User escalation is not possible,
• Charliecloud workflow:

– Dockerfile → the user,
– Building the image + tarball conversion → root,
– Unpack tarball / Bind-mount / Execution → the user,

Rémy Dernat – CNRS - ISE-M

https://hpc.github.io/charliecloud/

21

Charliecloud

• Use the host network,
• Not heavily maintained with only one contributor (Reid

Priedhorsky),
• Limited in term of functionalities.

Rémy Dernat – CNRS - ISE-M

22

Singularity

Rémy Dernat – CNRS - ISE-M

(c) Gregory M. Kurtzer

23

Singularity

• http://singularity.lbl.gov/
• Mostly developed par Gregory M. Kurtzer (CentOS, Warewulf, …)

at Lawrence Berkeley National Laboratory,
• Motto BYOE (Bring You Own Environment),
• The container is only one file,
• Developed with HPC in mind: MPI, CUDA (…) !
• Pulling from docker to build a singularity container is possible ! As

well as Dockerfile conversion to a Singularity Spec file.
• Possibility to push the image in a singularity hub or even in a

docker registry (docker hub, local…).
• Integrates smoothly with any Job Scheduler.

Rémy Dernat – CNRS - ISE-M

http://singularity.lbl.gov/

24

Singularity

• True mapping of UID and GID inside/outside the container,
• User escalation is not possible,
• No (root) daemon,
• Possibility to include unit test.
• Singularity workflow:

– Dockerfile → the user,
– Creating/Building the image → root (*),
– Execution → the user,

(*) But you can build it on your local machine and then
transfer it to a cluster as it is only one file !

• Possibility to use Pipe:
cat /path/to/python/script.py | singularity exec \

/tmp/Demo.img python

Rémy Dernat – CNRS - ISE-M

25

Singularity - activity

Rémy Dernat – CNRS - ISE-M

26

Singularity Spec File (.def)

sudo singularity create –size 2048 file.img

sudo singularity bootstrap file.img file.def

Header, %setup, %post, %test, %files, and %runscript sections

Bootstrap: docker
From: ubuntu:latest
IncludeCmd: yes

%runscript
 echo "I can put here whatever I want to happen when the user runs my container!"
 exec echo "Hello " "$@"
%post
 echo "Here we are installing software and other dependencies for the container!"
 apt-get update
 apt-get install -y git vim

Rémy Dernat – CNRS - ISE-M

27

Reproducibility

• Reproducibility
– What we want in Science (reproducible research),
– Undeniable advantages for the containers,
– But… Will see it later

• Versioning and sharing simple files to be able to rebuild the same
image:

– Dockerfile for Docker
– Def/Specification file for Singularity
– Registries to push and share images.

Rémy Dernat – CNRS - ISE-M

28

Reproducibility

• What could change results between the host and the container (on
the same host) ?

– Libraries (used, versions…),
– Compilation if needed (gcc ?, options, versions…),
– Environment variables,
– External resources:

• Programs called (present or not, version...),
• Downloads (the image, codes and packages…),
• (non) Mounted filesystems (local bind, nfs…),
• Random numbers,
• Accesses and permissions with other programs and on

resources :
– Competitions, security (apparmor/selinux/seccomp

profiles), …

• How to solve these problems (except for random numbers) ?
– Using a .Spec file/Dockerfile, running tests (checksums, ldd

(libraries), test section, scripts), local resources, and
removing/controlling restrictions/checking accesses….

Rémy Dernat – CNRS - ISE-M

29

Reproducibility

• What could change results between the host and the container (on
a different host) ?

– Each point from previous slide +,
– The kernel version and loaded drivers (presents ?, versions...),
– The processor (brand (Intel/AMD), type/architecture (amd64 ? arm

? floating point precision...), available/activated features (AVX,
SSE…)...), endianness ?,

– Specific local configurations:
• Local time, locales, encoding,
• Network configuration (network stack, DNS…),
• Sourced files
• …

• How to solve all these problems ?
– See previous slide → tests...

Rémy Dernat – CNRS - ISE-M

30

Performances and reproducibility

• Comparing reproducibility tests between bare-metal vs singularity
vs docker vs lxc:

– Building a binary and checking it with sha1sum and libraries with
ldd:

• Gives the same results on a similar host (sha1sum and
libraries if it has been built with the same distro, the same
version of gcc and in the same way).

• A binary compiled on the host and then transferred on the
container gives the same results (HPL linpack
benchmarks) as if it was built on the container.

Rémy Dernat – CNRS - ISE-M

31

Performances and reproducibility

• Comparing some benchmarks between bare-metal vs singularity
vs docker vs lxc:

– Checking startup benchmarks,
– Checking network benchmarks,
– Checking CPU benchmarks,
– Checking HDD IOs benchmarks,
– Checking Memory IOs benchmarks,
– Checking GPU benchmarks,

https://github.com/remyd1/containers-benchs/

Rémy Dernat – CNRS - ISE-M

https://github.com/remyd1/containers-benchs/

32

Jonathan Dursi – bioinfo tools benchmarks Singularity vs Docker
and Native

Rémy Dernat – CNRS - ISE-M

(c) Jonathan Dursi. Y Axis in seconds

	Slide 1
	Diapo 2
	Diapo 3
	Slide 2
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

