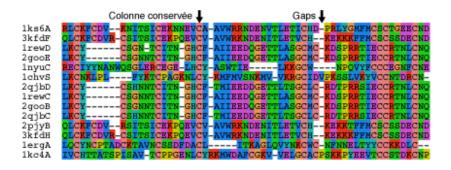
Aligning the unalignable: bacteriophage whole genome alignments

Sèverine Bérard, Annie Chateau, Nicolas Pompidor, Paul Guertin, Anne Bergeron and Krister M. Swenson

Colloque IPB 2015 Montpellier


BACTERIOPHAGES GENOMES: A MOSAIC STRUCTURE

• Modular theory of phage genome organization [Botstein, 80]: biological functions are grouped into *modules* whose order is mostly conserved along the genomic sequence

• Each module has *variants* that perform the same functions, possibly encoded by dissimilar sequences

《曰》 《聞》 《臣》 《臣》

CLASSICAL MULTIPLE ALIGNMENTS

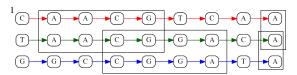
Central dogma: sequence similarity \Rightarrow functional similarity

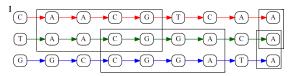
Introduction	Alpha	Validation	Conclusion
Phages mu	LTIPLE ALIGN	IMENTS	
1 2	3 (A:59439-3801]	4	5
A [9130-9331] B [8469-8670] C [8474-8675] D [9269-9470] 94% 202	363 B.(8778-9682) C.(8783-9687) 905	A (9602-11573) B (9683-11454] C 39686-11459] 91% 1772	A:[11574-11815] B:[11455-11696] C:[11460-11701] D:[12111-12352] 91% 242
		D (9471-12110) 2640	$ \rightarrow $

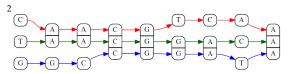
- The alignments rely on phages genomes features:
 - ▶ functional collinearity
 - ▶ a low duplication rate
 - ▶ the presence of long shared sequences

The Alpha Aligner

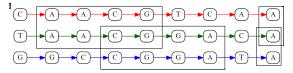
Ideas

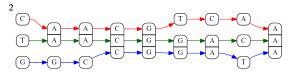

- to use exact matches (= anchor)
- to order them in a *graph* representing their succession in the genomes
- not to linearize the graph in an alignment

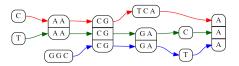

The Alpha Aligner

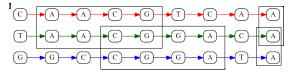

Ideas

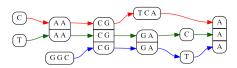
- to use exact matches (= anchor)
- to order them in a *graph* representing their succession in the genomes
- not to linearize the graph in an alignment

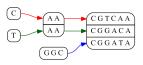

 \Rightarrow we work on graphs, representing partial order, to capture mosaicism of sets of genomes







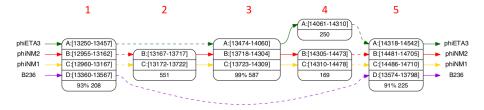




4

Introduction	Alpha	Validation	Conclusion
Alpha's ch	ARACTERISTIC	S	

• One parameter m: minimal length of matches. Allow to adjust the alignment view


Alpha's characteristics

- One parameter m: minimal length of matches. Allow to adjust the alignment view
- Time complexity in O(α(M_l)M_l + nN_l) (where M_l is the total length of matches, α is the inverse of the Ackermann function, n is the number of genomes and N_l is the total length of genomes)
 - = reasonable calculation time

Alpha's characteristics

- One parameter m: minimal length of matches. Allow to adjust the alignment view
- Time complexity in O(α(M_l)M_l + nN_l) (where M_l is the total length of matches, α is the inverse of the Ackermann function, n is the number of genomes and N_l is the total length of genomes)
 - = reasonable calculation time
- Functional collinearity hypothesis: Alpha detects large rearrangements events that contradict this hypothesis and does not perform the alignment in such a case

Introduction	Alpha	Valida	ntion	Conclu	sion
HIGHLIGHTING	G REARRAN	NGEMENTS	(<i>e.q.</i>	DELETIONS)

Figure 4 A local alignment of four S. aureus bacteriophages. In column 3, three phages are in a 587 bp exact alignment, with 99 % identical columns. A major deletion in phage B236 spans columns 2, 3, and 4, and the corresponding arrow is dotted to reflect the fact that some basepairs are not shown, 9 bp in this case.

э

イロト イボト イヨト イヨト

HIGHLIGHTING REARRANGEMENTS (e.g.RECOMBINATION)

Figure 5 Modules and variants. Local alignment of four *S. aureus* bacteriophages clearly showing modules and variants. Notice that sequences with the same variant in the second column are switched in the fourth.

э

イロト イボト イヨト イヨト

ANCHORS VISUALIZATION, BACKBONE

							Г				1					
U2	-	A:[0-0])	A:[3841-3872]	┝	A:[20932-20960]	+	A:[21479-21507]	-	A:[22817-22842]	•	A:[23421-23485]	•	A:[33001-33001]	-	U2
Doom		B:[0-0]	┝	B:[4491-4522]	┝	B:[21581-21609]	┝	B:[22128-22156]	-	B:[23466-23491]	•	B:[24070-24134]	-	B:[33001-33001]		Doom
Alvin		C:[0-0]	┝	C:[4527-4558]	┝	C:[21328-21356]	⊢+	C:[21875-21903]	-	C:[23213-23238]	-	C:[23874-23938]	-	C:[33001-33001]	┝	Alvin
Bxb1		D:[0-0]	┝	D:[4275-4306]	┝	D:[20856-20884]	⊢∔	D:[21425-21453]	-	D{22763-22788]	•	D:[23367-23431]	-	D:[33001-33001]	┝	Bxb1
Solon		E:[0-0]	┝	E:[3712-3743]	┝	E:[21383-21411]	⊢∔	E:[21952-21980]	-	E [23290-23315]	•	E:[23894-23958]	-	E:[33001-33001]		Solon
Bethlehem		F:[0-0]	┝	F:[4504-4535]	┝	F:[22050-22078]	⊢∔	F:[22619-22647]	-	F:[23957-23982]	•	F:[24559-24623]	-	F:[33001-33001]	┝	Bethlehem
DD5		G:[0-0]	⊢→	G:[4406-4437]	⊢→	G:[21491-21519]	⊢+	G:[22060-22088]	-	G:[23398-23423]	-	G:[24000-24064]	-	G:[33001-33001]	⊢►	DD5
Pinto		H:[0-0]	┝	H:[4365-4396]	┝	H:[21384-21412]	⊢∔	H:[21953-21981]	-	H[23291-23316]	•	H:[23895-23959]		H:[33001-33001]	┝	Pinto
BilKnuckles		I:[0-0]	┝	I:[4364-4395]	⊢	I{21488-21516]	⊢∔	1:[22057-22085]	-	I:[23395-23420]	-	1:[23999-24063]	-	I:[33001-33001]	┝	BillKnuckles
KBG		J:[0-0]	⊢→	J:[4614-4645]	⊢	J:[21689-21717]	⊢+	J:[22236-22264]	-	J:[23574-23599]	•	J:[24178-24242]	-	J:[33001-33001]	⊢►	KBG
Lesedi		K:[0-0]	⊢→	K:[4002-4033]	⊢	K:[20539-20567]	1 +	K:[21108-21136]		K:[22446-22471]	-	K:[23050-23114]	-	K:[33001-33001]	⊢►	Lesedi
Museum		L:[0-0]	→	L:[3805-3836]	⊢→	L:[20844-20872]	1 +	L:[21413-21441]		L:[22751-22776]	•	L:[23355-23419]	-	L:[33001-33001]	⊢►	Museum
Violet		M:[0-0]	⊢→	M:[3811-3842]	⊢→	M:[21339-21367]	1 +	M:[21886-21914]	-	M:[23224-23249]	•	M:[23828-23892]	-	M:[33001-33001]		Violet
Kugel	>	N:[0-0]	→	N:[4310-4341]	⊢→	N:[20944-20972]	1	N:[21513-21541]		N{22851-22876]		N:[23455-23519]		N:[33001-33001]	⊢⊸⊳	Kugel
MrGordo		O:[0-0]	⊢→	O:[3994-4025]	⊢	O:[20488-20516]	⊢∔	O:[21057-21085]	-	O:[22395-22420]	-	O:[22999-23063]	-	O:[33001-33001]		MrGordo
KSSJEB		P:[0-0]	┝	P:[3723-3754]	⊢∙	P:[20583-20611]	⊢∔	P:[21130-21158]	-	P:[22468-22493]	•	P:[23072-23136]	•	P:[33001-33001]	┝╺╸	KSSJEB
Switzer		Q:[0-0]	⊢→	Q:[3839-3870]	⊢	Q:[20926-20954]	⊢+	Q:[21473-21501]	-	Q:[22811-22836]	•	Q:[23415-23479]	-	Q:[33001-33001]	⊢►	Switzer
Perseus		R:[0-0]	┝	R:[4375-4406]	┝	R:[21416-21444]	1 +	R:[21963-21991]	-	R:[23301-23326]		R:[24180-24244]		R:[33001-33001]		Perseus
Dreamboat		S:[0-0]	⊢→	S:[4107-4138]	⊢	S:[20728-20756]	⊢∔	S:[21297-21325]	-	S:[22635-22660]	•	S:[23239-23303]	-	S:[33001-33001]		Dreamboat
Seabiscuit		T:[0-0]	→	T:[3960-3991]	⊢	T:[20820-20848]	1+	T:[21367-21395]		T:[22705-22730]	-	T:[23309-23373]	-	T:[33001-33001]	⊢►	Seabiscuit
Trouble		U:[0-0]		U:[4554-4585]		U:[21591-21619]	⊢	U:[22160-22188]	-	U{23498-23523]	-	U:[24102-24166]	-	U:[33001-33001]		Trouble
BPBiebs31		V:[0-0]		V:[4497-4528]	⊢	V:[21035-21063]	1+	V:[21604-21632]	-	V:[22942-22967]	-	V:[23603-23667]	-	V:[33001-33001]	┝	BPBiebs31
Wheeler		W:[0-0]	→	W:[4271-4302]	⊢	W:[21107-21135]	1+	W:[21654-21682]	-	W:[22992-23017]	•	W:[23596-23660]	-	W:[33001-33001]	┝	Wheeler
Graduation		X:[0-0]	→	X:[4471-4502]	1→	X:[21530-21558]	1 +	X:[22099-22127]	-	X:[23437-23462]		X:[24041-24105]	-	X:[33001-33001]	┝	Graduation
JC27		Y:[0-0]		Y:[4079-4110]	1→	Y[20831-20859]	1 ∔	Y:[21400-21428]	-	Y:[22738-22763]	•	Y:[23342-23406]	-	Y:[33001-33001]	┝	JC27
Thor		Z:[0-0]		Z:[4077-4108]	1→	Z:[20892-20920]	1 +	Z:[21461-21489]	-	Z:[22799-22824]		Z:[23403-23467]		Z:[33001-33001]	┝─►	Thor
Aeneas		a:[0-0]	→	a:[4375-4406]	1→	a:[21127-21155]	1 →	a:[21696-21724]		a:[23034-23059]		a:[23638-23702]		a:[33001-33001]	┝	Aeneas
Sarfire		b:[0-0]	⊢►	b:[4077-4108]	1→	b:[20892-20920]	1 ∔	b:[21461-21489]	-	b:[22799-22824]		b:[23403-23467]		b:[33001-33001]		Sarfire
SkiPole		c:[0-0]	⊢→	c:[4412-4443]	⊢→	c:[21118-21146]	1 +	c:[21665-21693]	-	c:[23003-23028]		c:[23607-23671]	•	c:[33001-33001]		SkiPole
	1	Start	1	32	1	29	1	29		26		65		End		

Figure 6 The anchor view. Aligning a set of 29 *Mycobacterium* bacteriophages using m = 175: the aligner can display the sequence of anchors, or backbone, allowing the user to zoom quickly to a specific region. Boxes group pairs of anchors bounding a gapless alignment.

CAELAD E0001

ZOOMING FROM ANCHOR VIEW

									1	C:[5142-5289]	\mathbf{r}			
					E:[4657-5344]	$\overline{}$	~		6	E:[5486-5633]	H)			
					G:[4755-5442]	\neg	\neg			G:[5584-5731]	Ы			
					I:[4713-5400]		1		1	l:[5542-5689]	74			
U2	-	A:[3923-4189]			J:[4963-5650]	\neg		A:[4315-4455]	-	J:[5792-5939]	H	A:[4625-5084]	-	U2
Doom	-	B:[4573-4839]	KI-I		X:[4820-5507]		A	B:[4965-5105]	44	M:[4426-4573]	14	B:[5275-5734]		Doom
Alvin		C:[4609-4875]	HAN		97% 688		1)}	C:[5001-5141]	124	N:[4926-5073]	1	C:[5290-5749]		Alvin
Bxb1		D:[4357-4623]	HAN				VF	D:[4749-4889]	4	O:[4609-4756]	14	D:[5059-5518]		Bxb1
Solon		E:[4390-4656]	H	\searrow	A:[4190-4313]	r^{-1}	{}∕►	E:[5345-5485]	A	X:[5649-5796]	1409	E:[5634-6093]		Solon
Bethlehem		F:[4586-4852]	HVI)	\sim	B:[4840-4963]	//		F:[4978-5118]	HAL	c:[5027-5174]		F:[5288-5747]		Bethlehem
DD5		G:[4488-4754]	\square	$\langle \neg f$	C:[4876-4999]	'i		G:[5443-5583]	HAN (72% 148	J 🕅	G:[5732-6191]		DD5
Pinto	-	H:[4447-4713]	\mathbb{H}	\sim	D:[4624-4747]	'/		H:[4839-4979]	-140		^ (M)	H:[5149-5608]		Pinto
BillKnuckles		I:[4446-4712]	\mathbb{H}^{χ}	<u>`</u>	F:[4853-4976]	',	$(\rightarrow $	I:[5401-5541]		A:[4456-4624]	H	l:[5690-6149]		BillKnuckles
KBG		J:[4696-4962]	\mathbb{P}	\searrow	H:[4714-4837]	1	\checkmark	J:[5651-5791]	-**•	B:[5106-5274]	-X+	J:[5940-6399]		KBG
Lesedi		K:[4084-4350]	11		K:[4351-4474]			K:[4476-4616]	-114	D:[4890-5058]	14	K:[4786-5245]		Lesedi
Museum		L:[3887-4153]	1		L:[4154-4277]		- />	L:[4279-4419]		F:[5119-5287]	\mathcal{H}	L:[4589-5048]		Museum
Violet		M:[3893-4159]	1+		M:[4160-4283]		- •	M:[4285-4425]	-K	H:[4980-5148]	M•	M:[4574-5033]		Violet
Kugel		N:[4393-4659]	1		N:[4660-4783]		- ->	N:[4785-4925]		K:[4617-4785]	X ≯	N:[5074-5533]		Kugel
MrGordo		O:[4076-4342]	\vdash		O:[4343-4466]			O:[4468-4608]	-r	L:[4420-4588]	7 × •	O:[4757-5216]		MrGordo
KSSJEB		P:[3805-4071]	1 +		P:[4072-4195]		 - ▶	P:[4197-4337]		P:[4338-4506]	1.//▶	P:[4507-4966]		KSSJEB
Switzer		Q:[3921-4187]	1		Q:[4188-4311]			Q:[4313-4453]		Q:[4454-4622]	1//▶	Q:[4623-5082]		Switzer
Perseus		R:[4457-4723]	1 +		R:[4724-4847]	/		R:[4849-4989]		R:[4990-5158]	1/ •	R:[5159-5618]		Perseus
Dreamboat		S:[4189-4455]	1		S:[4456-4579]			S:[4581-4721]		S:[4722-4890]	1►	S:[4891-5350]		Dreamboat
Seabiscuit		T:[4042-4308]			T:[4309-4432]			T:[4434-4574]	-	T:[4575-4743]		T:[4744-5203]		Seabiscuit
Trouble		U:[4636-4902]		-	U:[4903-5026]			U:[5028-5168]		U:[5169-5337]	⊢⊷	U:[5338-5797]		Trouble
BPBiebs31		V:[4579-4845]		_▶	V:[4846-4969]			V:[4971-5111]		V:[5112-5280]		V:[5281-5740]		BPBiebs31
Wheeler		W:[4353-4619]	\vdash	_▶	W:[4620-4743]	\		W:[4745-4885]		W:[4886-5054]		W:[5055-5514]		Wheeler
Graduation		X:[4553-4819]	$\boldsymbol{\vee}$		Y:[4428-4551]		1	X:[5508-5648]	1	Y:[4694-4862]		X:[5797-6256]		Graduation
JC27		Y:[4161-4427]			Z:[4426-4549]		-	Y:[4553-4693]	Л,	Z:[4692-4860]		Y:[4863-5322]		JC27
Thor		Z:[4159-4425]	\sim		a:[4724-4847]		-	Z:[4551-4691]	1.	a:[4990-5158]		Z:[4861-5320]		Thor
Aeneas		a:[4457-4723]			b:[4426-4549]		-	a:[4849-4989]	1	b:[4692-4860]		a:[5159-5618]		Aeneas
Sarfire	-	b:[4159-4425]			c:[4761-4884]	1	-	b:[4551-4691]	1	81% 169	J 🕨	b:[4861-5320]		Sarfire
SkiPole		c:[4494-4760]		t	83% 124	j ``	-	c:[4886-5026]				c:[5175-5634]		SkiPole
		91% 267	j –					73% 141				85% 460	1	

Introduction	Alpha		Validation		Conclusio	111
Comparison Alpha 1 2	3	AUVE	4		5	
phETA3 • (A[9130-9331]) • (A[9130-9331]) • (A[91320-9438]) phNu2 • (B[9671-8777]) • (B[9671-8777]) • (B[9671-8777]) phNu1 • (D[9679-8708]) • (D[9679-8708]) • (D[9679-8708]) B206 • (D[9679-8708]) • (D[9679-8708]) • (D[9679-8708])	A (949-801) 393 0(8775-9682) C(8783-9687) 905		A (9802-11573) B:(9683-11454) C (9688-11459) 91% 1772 D (9471-12110) 2540		A:[11574-11818] pNETA B:[11456-11896] phiNM C[11460-11701] phiNM D[12111-12382] B236	2
Mauve						
9000 9200 9400 9600	9800 10000 10200 10400) 10600 10800 11	1000 11200 11400 :	11600 11800 120	00 12200 12	
R 1 2 3	4	х	4	5		
phiETA3 8400 8600 8800 9000 ∞ ₩1.00	92'00 94'00 96'00 98	00 10000 10200	10400 10600 10800) 11000 11200 11	1400 11600	
R 1 1 2	3	4	х	4	5	
* <u>phiNM2</u> 8400 8600 8800 9000	92'00 94'00 96'00 98'		10400 10600 10800	11000 11200 11	1400 11600 :	
- <u>1</u> 2	3	4	Northernol T	4	5	
R ⊥ [⊥] ∠	2	4	х	4	5	
200 9400 9600 9800	10000 10200 10400 106		11200 11400 11600) 11800 12000 1:	2200 12400 :	
R 1	4 x		4		5	
¥						C
B236 Validation						18

Introductio

_

Alpha

Validation

Comparison with Mauve

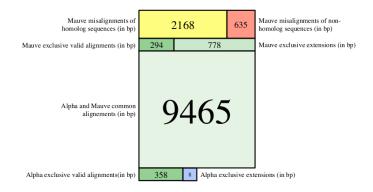


Figure 9 Alignments comparison. Diagram representing the repartition of 13706 bp of 70 block alignments by Alpha or Mauve. The top 5 rectangles are from alignments produced by Mauve, and the bottom 3 are from Alpha alignments. Green and blue rectangles represent valid alignments, while yellow and red are misalignments.

• Conclusion

▶ Alpha produces biologically meaningful alignments

• Conclusion

- \blacktriangleright Alpha produces biologically meaningful alignments
- ▶ Implemented in an interactive aligner

• Conclusion

- \blacktriangleright Alpha produces biologically meaningful alignments
- ▶ Implemented in an interactive aligner
- ▶ The model is almost parameter free

• Conclusion

- \blacktriangleright Alpha produces biologically meaningful alignments
- ▶ Implemented in an interactive aligner
- ▶ The model is almost parameter free
- Perspectives
 - ▶ Transfer of annotations

• Conclusion

- \blacktriangleright Alpha produces biologically meaningful alignments
- ▶ Implemented in an interactive aligner
- ▶ The model is almost parameter free
- Perspectives
 - ▶ Transfer of annotations
 - ▶ Extend our mathematical model to deal with rearrangements

THANK YOU FOR YOUR ATTENTION

- References:
 - ► Article: "Aligning the unalignable: bacteriophage whole genome alignments", *BMC Bioinformatics*, to appear
 - ► Tool: Alpha http://www.lirmm.fr/~swenson/alpha/alpha.htm

Any questions ?

《曰》 《聞》 《臣》 《臣》

Alpha produces gapless alignment

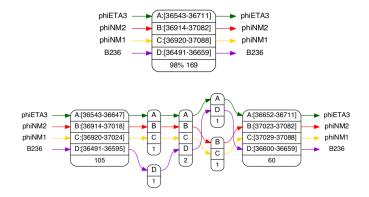


Figure 3 Contracted vertices. A example of a contracted vertex (top) and its expanded graph (bottom) in the alignment of four *S. aureus* bacteriophages. The length of the vertice is 169 nucleotides, and the percentage of identity is 98 %. In the expanded graph, there are two single nucleotide mutations that account for the 98% identity.

QUALITY OF ALPHA GAPLESS ALIGNMENTS

- Comparison with 3 other alignment tools : Clustal, MUSCLE and T-Coffee
- 491 alignments compared over 3 datasets
- Only 8 regions of disagreement. For 7 regions, Alpha alignments are validated by translating in a.a. (tblastx). For the last region, the right solution is unknown.

・ロト ・四ト ・ヨト