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Abstract

Genomes rearrangements carry valuable information for phylogenetic inference or
the elucidation of molecular mechanisms of adaptation. However, the detection of
genome rearrangements is often hampered by current deficiencies in data and
methods: Genomes obtained from short sequence reads have generally very
fragmented assemblies, and comparing multiple gene orders generally leads to
computationally intractable algorithmic questions. We present a computational
method, ADseq, which, by combining ancestral gene order reconstruction,
comparative scaffolding and de novo scaffolding methods, overcomes these two
caveats. ADseq provides simultaneously improved assemblies and ancestral
genomes, with statistical supports on all local features. Compared to previous
comparative methods, it runs in polynomial time, it samples solutions in a
probabilistic space, and it can handle a significantly larger gene complement from
the considered extant genomes, with complex histories including gene duplications
and losses. We use ADseq to provide improved assemblies and a genome history
made of duplications, losses, gene translocations, rearrangements, of 18 complete
Anopheles genomes, including several important malaria vectors. We demonstrate
the method’s ability to improve extant assemblies accurately through a procedure
simulating realistic assembly fragmentation. We study a debated issue regarding
the phylogeny of the Gambiae complex group of Anopheles genomes in the light of
the evolution of chromosomal rearrangements, suggesting that the phylogenetic
signal they carry can differ from the phylogenetic signal carried by gene sequences,
more prone to introgression. We also provide additional support for a differentiated
mode of evolution of the sex chromosome and of the autosomes in these mosquito
genomes.
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Introduction
The promises of using genes as evolutionary markers for phylogeny, introduced

half a century ago by Zuckerkandl and Pauling [1], have been largely deluded so

far [2, 3]. At every scale of evolution, gene histories can differ from organisms tree-

like phylogeny due to non-tree like evolutionary mechanisms such as incomplete

lineage sorting, horizontal gene transfer, hybridization, symbiosis, among others.

This happens for example in the Gambiae complex, composed of several African

Anopheles mosquito species, whose phylogeny is important to shed light on the origin

of malaria transmission to humans [4], but is difficult to trace because of apparent

extensive gene introgression within this complex [5,6]. Chromosomal rearrangements
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have been recognized, for an even longer time [7], as valuable phylogenetic markers,

due to several reasons, including their lower occurrence rate compared to sequence

evolution. They have proved to be of great interest for understanding mosquito

evolution for example [8, 9], due to the fact introgression of whole chromosomes is

much less frequent than introgression of genes [10]. Moreover, in terms of functional

and ecological implications, chromosomal rearrangements have also been shown to

be involved in important adaptation processes [11–13].

However chromosome evolution is still challenging to study, especially from short

reads sequence data, and current methods have severe limitations that we outline

now. First, some methods are limited to consider only chromosomal regions which

are highly similar and whose differences are detected by genetic mapping, polytene

chromosome banding, in situ hybridization or targeted sequencing [8]. Among

methods which can handle whole genome sequence data [14–19], some consider only

a small number of markers (often genes) with simple evolutionary histories (typically

duplication-free histories and one-to-one orthologous gene families), and most of

them require fully assembled extant genomes, aside of the recently published method

DESCHRAMBLER [20]. As a consequence existing methods are hardly applicable

to currently available genomic data, characterized by very short sequencing reads

that can not resolve genomic repeats [21,22], leading to highly fragmented genome

assemblies, often in the form of hundred or thousands of contigs or scaffolds, where

evolutionary breakpoints can not be distinguished from assembly artifacts.

Various types of data can help to improve the contiguity of genome assemblies

obtained from short reads. For example Third-Generation Sequencing (TGS) tech-

nologies generate long, albeit noisy, sequencing reads that can resolve ambiguities due

to repeats [23]; alternatively, chromosome conformation capture technologies [24,25]

or genome maps [26–28] have also been used successfully for scaffolding large genomes.

However in the absence of long range sequence data or genome maps, the most

widely used approach to scaffold contigs is the comparative approach, using one

or several related genomes to guide the scaffolding. The principle of comparative

scaffolding is to align contigs of a fragmented genome assembly onto one, or a set of,

assembled reference genome(s) and to deduce contig adjacencies from the contiguity

of the corresponding alignments along the reference(s). Most comparative scaffolding

methods rely on a single reference genome, assumed to be closely related enough

that contiguity along the reference can confidently imply contiguity in the newly as-

sembled genome [29–35]. Such methods have mostly been used to assemble pathogen

genomes using closely related assembled references, but have also be shown to be

applicable in wider contexts, such as scaffolding an antelope genome using a cow

genome as reference [34]. There exists few methods that can handle several reference

genomes at once, that can be distinguished between methods that do require that

the phylogenetic relation between the considered genomes are provided [36–39] and

methods that do not need such information [40]. Moreover, only two methods make

use of sequencing data that might not appear in the contigs to be scaffolded but can

provide a valuable scaffolding signal that complements the comparative signal [35,37].

All such methods are also limited to handle contigs containing repeats and discard

repeated contigs.

An important feature of most of these methods is that they assume a hypothe-

sis of genome rearrangement parsimony or near-parsimony to transfer contiguity
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information from the reference(s) to the genome of interest, this hypothesis being

either explicit [30, 31, 33, 38] or implicit [36, 39]. This points at the fact that the

comparative approach is a kind of conundrum: to scaffold genomes, comparative

methods rely, at least implicitly, on a framework to compare genomes and detect

conserved synteny and chromosomal rearrangements, while whole genome evolution

methods do not fare well when provided with fragmented genome assemblies.

We introduce a new computational method, ADseq, that addresses the issues

raised above, regarding both genome evolution by rearrangements and comparative

genome scaffolding; we apply it to simultaneously study the chromosome evolution

and improve the scaffolding of 18 Anopheles genomes, 16 of them recently sequenced

by Neafsey et al. [4], including several important malaria vector species. The method

ADseq does not need a fully assembled reference genome, as is required by most

comparative scaffolding methods, but takes as input a set, that can be arbitrarily

large, of fragmented genome assemblies, together with a species phylogeny. It also

takes advantage of sequencing data such as paired-end reads, for species for which

it is available. From this input, ADseq computes ancestral genome segments, as

well as extant scaffolding adjacencies. Additionally, ADseq allows the user to infer

evolutionary scenarios in terms of gene duplication, gene loss, gene displacement

and genome rearrangement along each branch of the species phylogeny. A Gibbs-

Boltzmann probabilistic framework based on the cost of adjacencies gain and breaks

in evolutionary scenarios provides a statistical support on all ancestral and extant

inferred adjacencies, with sequencing data used to define a prior on extant gene

adjacencies. To handle genes whose history involves duplication and loss, ADseq

relies on the use of reconciled gene trees, in terms of gene duplication and losses, which

allows to use a much larger gene set than existing comparative scaffolding methods

relying on one-to-one orthologous genes or gene families with simple duplication/loss

histories. We present, together with the ADseq method, a validation procedure for

the extant genome scaffolding aspect of ADseq relying on a realistic framework to

generate artificially fragmented genome assemblies.

Using ADseq, we provide an analysis of whole genome evolution in a large

set of Anopheles species with an unprecedented precision, being able to quantify

duplications, losses, gene displacements between chromosomes, and chromosomal

rearrangements. We work at a much finer scale than cytogenetics methods [41–47],

rely on a larger gene complement than traditional genome rearrangement methods

based on rothologous genes, and we provide a refined evolutionary analysis compared

to [4] due to the improvement of extant genome scaffolding. In particular we

find that gene displacements between chromosomes are much more frequent for

genes belonging to families with duplication/loss histories, that previous studies

handling only one-to-one orthologous genes had mostly outlooked. We also use our

method to compare two alternative Anopheles phylogenies. We find that Anopheles

genomes are compartmentalized between autosomes and sex chromosome according

to duplications and chromosomal rearrangements, just as they were found to be

according to gene sequences. We provide an alternative hypothesis to the conclusions

of Fontaine et al. [5] about introgression of the major part of the genome. Indeed

our measures of rearrangements and duplications are in favour of the phylogeny

supported by most genes.
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Materials and methods
We first describe the main methodological contribution of our work, the ADseq

tool, followed by its application to the specific Anopheles genomes data set we

analyze in detail. We begin by introducing some simple but important terminology.

A gene, extant or ancestral, is seen as a directed DNA segment with two extremities.

Genes are parts of larger segments containing one or several genes, which are contig,

super-contigs, scaffolds or even chromosomes for well assembled genomes. Two genes

that are contiguous along such a segment define an adjacency between one extremity

of each gene, that we call a gene adjacency. Thus segments of genes, either extant

or ancestral, are encoded by linearly organized sets of gene adjacencies. For extant

genomes, such segments, corresponding to contigs, scaffolds or chromosomes, are

observed, while for ancestral genomes, segments are reconstructed and are to be

considered as hypothetical as they are not directly supported by sequence data.

Ancestral segments have previously been termed Contiguous Ancestral Regions

(CARs) [19, 48, 49]. However, to stress the similarity between scaffold in extant

genomes and CAR in ancestral genome, we use the generic terminology ”segment”

for both throughout this paper.

Assembly Recovery through Detection of Coevolution with sequencing data (ADseq)

ADseq builds upon a family of methods aimed at reconstructing the evolutionary

history of gene adjacencies introduced with the DeCo algorithm [50] and extended

along several lines in [51,52]. It is implemented within the package DeCoSTAR [53].

The aim of ADseq is to jointly scaffold extant genomes and reconstruct ancestral

gene orders, through the joint analysis of phylogenomics and sequencing data.

ADseq takes as minimal input a species tree and a set of extant genomes data:gene

adjacencies, homologous gene families and their associated reconciled gene trees (see

for example [54] for background on reconciled gene trees). Reconciled gene trees

implicitly yield the gene content of ancestral genomes. A key feature of ADseq

is that the extant gene adjacencies can originate from genomes in various state of

assembly, from fully assembled genomes —where gene adjacencies encode the gene

order along the chromosomes—, to ambiguously assembled genomes represented as

scaffolding graphs, through fragmented genomes assembled into contigs or scaffolds.

Each extant gene adjacency is assigned a prior score in [0, 1], expected to represent

the confidence that the adjacency actually occurs in the genome of interest. This prior

can be obtained from sequencing data or genome maps for example; so adjacencies

between genes in fully assembled genomes will have a high prior score, while a

potential gene adjacency in a poorly assembled genome and that is not supported by

a strong signal in terms of sequencing data will likely be assigned a low prior score.

ADseq processes independently all pairs of gene families for which at least one

extant adjacency is observed between genes from these families. A solution of ADseq

on such an instance is a set of extant and ancestral gene adjacencies between extant

and ancestral genes of the two considered families, that are consistent with the given

reconciled gene trees. Taking the obtained solutions over all pairs of gene families

defining ADseq instances, ancestral adjacencies link ancestral genes extremities

into ancestral genome segments, while extant adjacencies improve the scaffolding of

the provided extant genomes and reduce their fragmentation. This, together with
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Figure 1 Input and output of ADseq. (Left) Input data: (1) a species tree with extant genomes
(A, B and C) containing observed adjacencies (black link) and scaffolding gene adjacencies with a
prior score (blue link); each grey box represents a gene. (2) reconciled gene trees representing
evolutionary histories of gene families annotated by evolutionary events. (Right) Typical output:
gene order across ancestral and extant genomes including new extant gene adjacencies with a
posterior score (green link) between genes located at fragments extremities in the initial genome
assemblies.

the reconciled gene trees, in turn provides an important input material for studying

whole-genome evolution through mechanisms such as gene duplication, loss and

transfer, introgression, or genome rearrangement. Figure 1 provides a high-level

overview of the ADseq algorithm.

An important feature of ADseq is that, for each considered instance, it does not

compute a single solution, but samples solutions from the, often large, associated

search space. In order to sample solutions, ADseq relies on a score, function of

the number of evolutionary events and the prior score of adjacencies. Any solution

indeed yields a number of gains and breakages of gene adjacencies, that model

genome rearrangement events consistent with the provided reconciled gene trees

(see a description of the propagation rules that allow to infer gains/breakages from

reconciled gene trees in the DeCo algorithm [50]). The score of a solution S is

defined as n(S) = g(S) + b(S) + c(S) where g(S) is the number of gene adjacency

gains scaled according to a user-defined unit cost of a gain; b(S) is the number

of gene adjacency breakages again scaled according to a user-defined unit cost;

c(S) is the cost of including or discarding extant adjacencies, based on their prior

score: for an adjacency of prior score p, including the adjacency in a solution costs

−kT0 log(p) while discarding it from the solution costs −kT0 log(1− p), where kT0
is a pseudo-temperature that we discuss in details in Supplementary text.

A polynomial time and space Dynamic Programming (DP) algorithm samples

solutions for a given instance with a probability proportional to their score. More

precisely, ADseq can sample solutions under a Gibbs-Boltzmann probability dis-

tribution defined as follows: the Gibbs-Boltzmann score of a solution S is equal to

exp−n(S)/kT , where kT is a user-defined pseudo-temperature, and this score defines

implicitly a probability distribution over the set of all solutions. Tuning the pseudo-

temperature kT provides a control over the probability to sample parsimonious

solutions: a low pseudo-temperature tends to increase the probability to sample most

parsimonious solutions while a large pseudo-temperature skews the Gibbs-Boltzmann

distribution toward the uniform distribution over the set of all solutions (we refer

to [51] for more details on the Gibbs-Boltzmann framework applied to the DeCo

algorithm).

In the present work, the prior scores of extant adjacencies are either 1.0 for

adjacencies that are observed in a contig or scaffold, or a scaffolding score obtained
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from sequencing data using the scaffolding software BESST. Pairs of genes located

at the extremities of contigs and for which sequencing data do not provide any

evidence for a scaffolding adjacency receive a small prior score as described in [52]

(see also Supplementary text). The posterior scores are defined as the frequency

out of a sample of 100 solutions with temperatures kT = kT0 = 0.1 that skews the

Gibbs-Boltzmann distribution toward optimal solutions.

Linearization of extant and ancestral components.

After ADseq is applied to all considered pairs of gene families, the obtained result

is a set of ancestral and extant gene adjacencies, each adjacency being assigned a

posterior score. False positives – i.e. pairs of genes predicted inaccurately to be

contiguous in an extant or ancestral genome–, can be due to errors in the data

(for example errors in gene families or reconciled gene trees) or to errors in the

inference process (for example the parsimony assumption might be wrong for some

gene adjacencies). As a result, it is possible that a given gene (or gene extremity)

belongs to more than two (more than one) adjacencies, which is incompatible with

the expected linear structure of chromosomes.

To address this issue, we process the set of ADseq ancestral and extant adjacencies

in such a way that they define linear ancestral and extant segments. To do so, we

apply, independently for each species, a method used both in ancestral genome

reconstruction [55] and scaffolding algorithms [56]. It consists in extracting, for each

species, a Maximum-Weight Matching (MWM) in the graph whose vertices are

gene extremities and edges are gene adjacencies, weighted by their posterior score.

This MWM can still include circular segments, that are linearized by removing the

least-weight edge of each such circular segment. Moreover, prior to this linearization

step, we discard adjacencies whose posterior score is below a user-defined threshold,

that was set to 0.1 after simulations aimed at measuring the accuracy of the ADseq

algorithm (see Fig. 2). This linearization step is done independently for each species,

ancestral or extant.

Application to the Anopheles data set

We now describe how we generated the data for the 18 Anopheles genomes.

Species trees.

The main species phylogeny we considered was taken from [5]. We call it the ”X

phylogeny” as it is based on the X chromosome genes. It is the species tree used

by default unless another is specified. We also considered an alternative ”WG

phylogeny”, that was introduced in [5] as the most frequently observed among trees

built using sequences from the autosomes (Fig. 4).

Genomic data.

Most genomic data we used were produced by the A. 16 Genomes project described

in [4] and retrieved from VectorBase (https://www.vectorbase.org): genome

assemblies (contigs, scaffolds, or chromosome arms), gene annotations, and gene

sequences (CDS). For 16 out of the 18 considered Anopheles species, we retrieved

from the NCBI Sequence Read Archive (SRA) paired-end Illumina libraries with an

https://www.vectorbase.org
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insert size of 180bp (’fragment’ libraries) and mate-pair libraries with an insert size of

1.5kbp (’jump’ libraries), both obtained from a single female individual. Additional

low-coverage long-range sequencing libraries (’Fosill’ libraries) were obtained from

pools of individuals. Details are available in Tab. 2.

Gene families and trees.

We retrieved homologous gene families from orthologous gene groups of 21 Culici-

dae species recovered from the OrthoDBmoz2 database (http://cegg.unige.ch/

orthodbmoz2) generated using OrthoDB [57]. We generated a multiple sequence

alignment for each family, used RAxML [58] to compute draft gene trees with

bootstrap supports, and then corrected these draft gene trees using ProfileNJ [59].

ProfileNJ contracts branches with low bootstrap support and, using the species

tree, resolves the polytomies in a way that minimizes the number of duplications

and losses in a reconciliation. This resulted in 14,940 gene trees containing 183,680

genes. We refer to Supplementary text and Figs. 5, 8, and 7, for a description of our

preprocessing of these gene families, a comparison of the newly inferred gene trees

with the original ones computed by the Anopheles consortium and for statistics on

the inferred gene duplications and losses in these gene trees. As a species phylogeny

is required to reconcile gene trees, we repeated the process described above for both

the X phylogeny and the WG phylogeny.

Extant adjacencies and prior scores from sequencing data.

Sequencing reads from all libraries were filtered to discard low quality reads and

trimmed to 75bp length using Trimmomatic [60], then mapped onto the contigs

or scaffolds of the considered species using Bowtie2 [61]; for reads with multiple

mappings, all of them were conserved. The scaffolding software BESST [62, 63] was

then used to detect potential scaffolding adjacencies between pairs of contigs con-

taining at least one annotated gene. Scaffolding adjacencies that were not supported

by at least four pairs of reads were discarded. For remaining scaffolding adjacencies,

we assigned a score defined as the arithmetic mean of the two scores computed by

BESST, the link variation score and the link dispersity score. Detailed statistics on

the scaffolding adjacencies so obtained are available in Fig. 10 and 11.

Genome fragmentation simulations for measuring the accuracy of ADseq for extant

scaffolding

We developed a validation protocol of ADseq to measure its ability to propose

reliable extant scaffolding adjacencies (see Fig. 12 for an illustration of the protocol).

The key element is to provide toADseq a genome whose assembly is more fragmented

than the reference assembly, in order to verify that ADseq can retrieve the lost

adjacencies. Moreover our simulation framework aims at generating a realistic

fragmentation, as relying on a random fragmentation, as used in other validation

protocols [16,52], generates data that are in general easy to scaffold using comparative

methods.

To avoid this pitfall we simulated a fragmented assembly by re-assembling the

considered genomes using KmerGenie [64] and Minia [65]. Minia was chosen

due to its stringency in handling repeats, that leads to more conservative and

http://cegg.unige.ch/orthodbmoz2
http://cegg.unige.ch/orthodbmoz2
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fragmented assembly compared to other contig assemblers. We applied this protocol

to a randomly chosen either all or half of the raw sequence reads, independently three

times, with the species A. albimanus, A. arabiensis and A. dirus, whose positions in

the species tree allow to consider various evolutionary contexts.

We ran ADseq as described above on these new assemblies and compared its

results (scaffolding adjacencies) with the reference assemblies. We call a True Positive

(TP) adjacency an adjacency inferred by ADseq and present in the initial genome

assembly. A False Positive (FP) adjacency corresponds to an adjacency inferred by

ADseq and not present in the reference genome assembly. A FP can however be a

true adjacency not found by the reference assembly (e.g., connecting two scaffolds),

so we call Certain False Positive (CFP) a FP adjacency which extremities are not

scaffold or contig extremities in initial genome assembly. Finally a False Negative

(FN) is a pair of gene extremities that are contiguous in the initial assembly but are

not inferred as an adjacency by ADseq. From these values we compute the usual

precision and recall statistics, but using CFP for the false positives count.

Gene order evolution analysis

Assignment of chromosome segments.

To compare the evolution of Anopheles chromosomes, especially the apparent differ-

ences between the X chromosome and the autosomes described in [4], it is necessary

to assign extant and ancestral chromosome segments to either the X chromosome

or the autosomes. As A. gambiae is the only fully assembled genome in our data

set, this is also the only genome for which such information is readily available;

in all other species the genomes are assembled into scaffolds with no indication of

whether this scaffold belongs to the X chromosome or an autosome, unless additional

data is available, such as genome maps. We assigned extant and ancestral genes

and segments to the X chromosome or autosomes using the following probabilistic

method. For each gene g (ancestral or extant), a set of An. gambiae orthologs is

defined as all An. gambiae genes from the same gene family than g whose last

common ancestor with g in the reconciled gene tree is a speciation node. Note that

this set might be empty, and that this definition includes the case where g is an

ancestor of a An. gambiae gene. The probability of g being on the X chromosome is

then defined as the frequency of orthologs located onto An. gambiae X chromosome,

or, if no ortholog is present on this X chromosome, by a background probability,

defined as the global frequency of An. gambiae genes on the X chromosome. Then

each segment is given a probability to be located on the X chromosome as the mean

of probabilities for all genes it contains. Each gene then inherits the probability of

being on the X chromosome from the segment it belongs to.

Very recently an assignment of An. albimanus genes to chromosomes was published

together with a new assembly [66] that we could use to verify that our assignment

method is accurate: out of 8,840 genes assigned to a chromosome in the novel assembly,

we correctly predicted the autosomal/X placement of 8,837 genes (comparing the

assignment of higher probability and the assignment in the new assembly).

Gene movements (translocations).

For every couple of genes for which one is a direct descendant of the other, we inferred

a gene movement (between the X chromosome and an autosome) if the probability
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of the ancestral gene being on the X chromosome is ≤ 0.2 while the probability of

the descendant gene being on the X chromosome is ≥ 0.8, or conversely.

Detecting chromosomal rearrangements.

For every branch of the species tree, genes with exactly one exemplar in their

family both in the ancestor and descendant species were selected. Then conserved

adjacencies were computed, which are adjacencies present between ancestral genes

and descendant homologous genes. In order to discard gene displacements, which

are counted elsewhere, we filtered also genes which are not involved in any common

adjacency. A rearrangement (gain or breakage of a gene adjacency) is counted

every time two gene extremities are contiguous on a segment (with respect to

the reduced selected set of genes) of the ancestor, but not on the descendant, or

conversely. When they are not contiguous, in order to detect a certain genome

rearrangement, we require also that they are not both the extremities of their

segments, to avoid counting as a rearrangement a potentially undetected scaffolding

adjacency. Rearrangements were not directly counted as gains and breakages output

from ADseq because this count can be blurred by adjacencies gained or broken by

gene duplications and gene losses. As a consequence, gene duplications and losses

are not counted as rearrangements, that are limited to synteny breakages due to

balanced rearrangements (inversions, transpositions, large translocations), that do

not change the gene content.

We stress that this method to detect genome rearrangements is conservative and

underestimates rearrangement counts, as it does not detect the rearrangements

hidden by the assembly fragmentation of the considered genomes. Moreover, this

underestimation can be biased by the degree of fragmentation of the compared species,

so two numbers of rearrangements are not necessarily comparable in biological terms,

even for species closely located in the species phylogeny. However, given the same

genomes in the input, the numbers of rearrangements for two different phylogenies

are comparable, as are the number of rearrangements in sex chromosomes and

autosomes.

Data accessibility

Data used in this study are available on the github repository: https://github.com/

YoannAnselmetti/DATA_Phylogenetic-signal-from-rearrangements-in-18-Anopheles-species.

Results
The results are organized in three parts. First, we describe the results of the

simulation-based evaluation of the accuracy of ADseq to recover extant scaffolding

adjacencies. Then we describe extant and ancestral genomes obtained with ADseq,

and analyze important aspects of their evolutionary history. Finally we use ADseq

to evaluate different species trees and re-examine the conclusions of [5] regarding

species evolution.

Validation of the ADseq algorithm for extant scaffolding

We compared the scaffolding performance of ADseq with two other methods, on

the same data set of realistically fragmented genomes (see Methods). One is using

https://github.com/YoannAnselmetti/DATA_Phylogenetic-signal-from-rearrangements-in-18-Anopheles-species
https://github.com/YoannAnselmetti/DATA_Phylogenetic-signal-from-rearrangements-in-18-Anopheles-species
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Figure 2 Precision and recall statistics for scaffolding adjacencies on three artificially
fragmented genomes (A.alb: A. albimanus, A.ara: A. arabiensis and A.dir: A. dirus). Left
graph: results with 50% of reads. Right graph: results with all reads. The different methods
results are plotted with the precision on the Y axis and the recall on the X axis. For ADseq and
AD, results for three different adjacency support thresholds (0.1, 0.5 and 0.8) before genome
linearization are plotted and represented with a color gradient. Note: A True Positive (TP)
adjacency requires the proper orientation of both genes.

sequence information only, BESST [63], while the other one is using the comparative

approach only, on the same phylogenomic data, AD (ADseq, where the possibility

of using sequence information is turned off). Figure 2 shows the precision statistic

in function of the recall statistic for the two data sets (sampling 50% of the reads or

using them all). For ADseq and AD, different values of the threshold for filtering

adjacencies prior to linearization (see Methods) were tested.

ADseq outperforms BESST in precision and recall independently of the threshold.

This shows that in the majority of cases, adding phylogenomic information improves

the recall without affecting the precision compared to a method purely based on

sequence data. Additional results, where the gene orientation is not considered to

determine an inferred adjacency as TP, are provided in Fig. 13. These results show

that BESST has an equivalent precision and recall statistics compared to results of

Fig. 2 where gene orientation is considered. This comparison shows that for most of

inferred adjacencies the three methods inferred the right orientation for both genes

involved in adjacency. In summary the combined approach using comparative signal

and sequence data (ADseq) is giving significantly better results than a method

based on sequence alone (BESST).

We now compare ADseq and AD. Precision and recall statistics are slightly

better with ADseq than with AD for all considered threshold values (except for A.

dirus for a threshold of 0.5 where precision is slightly better for AD than ADseq).

For A. albimanus, with all reads considered, ADseq outperforms AD for recall

statistic for a threshold fixed to 0.1 and 0.5. So from a quantitative point of view,

adding sequence data seems to have a smaller impact on the recall and precision

statistics compared to using synteny evolution. Note however that the combination

of both supports for extant scaffolding adjacencies (sequence data and synteny

evolution) is an important by-product of ADseq. A phylogenetic method alone

is more difficult to trust in the absence of sequence data. So even if the general

statistics are comparable, the additional support brought by the sequence data

is an important feature. Moreover, additional results in Figs. 16 and 17 strongly

support that a joint combination of phylogenetic and sequence signals (ADseq)
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Figure 3 Left: Number of segments in extant and ancestral genomes, according to three runs
of ADseq in three different conditions. In the first run, we turn off the scaffolding mode on the X
phylogeny, that is, it only constructs ancestral segments. The first column ”XNS ext” thus describes
the initial assembly, and ”XNS anc” the assembly of ancestral genomes when reconstructed without
extant scaffolding. In the second and third runs, the scaffolding mode was turned on, and run with
the X phylogeny (”X ext” and ”X anc”) and the WG phylogeny (”WG ext” and ”WG anc”). Right:
Number of rearrangements over all branches of the X phylogeny, with and without the
scaffolding mode.

overpasses an a posteriori combination of phylogenetic signal and sequence data (AD

+ BESST) for scaffolding improvement. These results show indeed that combining

AD + BESST slightly overpasses ADseq in term of recall statistic (stronger TP

adjacencies) but at the expense of a strong decrease of the precision.

Improved scaffolding of Anopheles extant and ancestral genomes

Properties of the improved assemblies for Anopheles extant genomes and of the

reconstructed Anopheles ancestral genomes segments are summarized in Fig. 3. We

describe three runs of ADseq: one without proposing extant scaffolding adjacencies

(which amounts to use the DeClone algorithm [51] to reconstruct ancestral genomes

without improving extant genomes) and two with ADseq using the X and WG

species phylogenies. The first observation that can be made is that the ability to

create extant scaffolding adjacencies has a very significant impact on the ability to

reconstruct ancestral segments, that define ancestral genomes at a similar level of

fragmentation than the improved extant genomes. This effect is important toward

refined genome evolution analysis that rely on the ancestral segments as input

material, especially to detect chromosomal rearrangements.

Tab. 5 and Figs. 18, 19, and 20, provide more detailed illustration and statistics

on the improved scaffolding. We observe that from 36,634 initial extant segments

(contigs, supercontigs and scaffolds after the various filterings steps described in

Methods and SI text), we scaffold the extant genomes into 13,525 segments, with an

average number of 94 genes per segment up from 37 before running ADseq. Very

similar results are obtained for all genomes independently of the chosen phylogeny,

confirming the overall picture described in Fig. 3-Left.

On the right side of Fig. 3, we can observe that we retrieve a significantly (Wilcoxon

paired test, p-value < 10−4) higher number of rearrangements by the joint scaffolding
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technique than by just constructing ancestral genomes without scaffolding extant

genomes. So the joint scaffolding of extant and ancestral genomes is beneficial

to both. In particular scaffolding extant genomes while reconstructing ancestral

genomes gives access to more information regarding the evolutionary history.

An interesting feature of ADseq is the possibility that the linearization step does

delete an observed gene adjacency in an extant genome. This is unlikely as observed

adjacencies have the highest score in the linearization procedure, but it can happen

if it is in conflict with other adjacencies with high posterior probability. It happened

only once in our dataset, for an adjacency between two A. culcifacies genes. The two

genes were predicted in the reverse order, or equivalently in the reverse orientation,

because all identified homologs were arranged similarly. This can be explained either

by two inversions, one encompassing each gene, or by an assembly or annotation

error. This shows that our approach can also detect questionable adjacencies in the

given extant assemblies.

Evolution and phylogeny

ADseq is not a phylogenetic method per se, as it requires a given species phylogeny

and does not include an extension to search an optimal phylogeny according to some

evolutionary criterion. However as a method which infers ancestral gene orders and

evolutionary events, and is computationally efficient (all steps that require a species

phylogeny, including the correction of gene trees with ProfileNJ, the reconciliation

of the gene trees with the species trees, and the joint scaffolding / ancestral genome

reconstruction takes five hours on a laptop), it can be used to compare a few selected

competing phylogenies. To this aim we compared several measures obtained by

the same methods using the two phylogenies, WG and X, the later being shown

in [5], to depict accurately the species evolution, following an argument based on

the comparison of branch lengths of the gene trees.

Duplications.

Our pipeline using ProfileNJ to correct gene trees allows to record gene duplica-

tions. We counted a total of 6,461 duplications for the X phylogeny, against 6,159

duplications for the WG phylogeny (see Table 1). This means that for many gene

families, a duplication was identified in the X phylogeny and not in the WG phy-

logeny. For these families, a well supported branch (100% bootstrap with RaxML)

was compatible with the WG phylogeny but not with the WG phylogeny, indicating

that well supported branches are more often compatible with the WG phylogeny.

This supports the result of [5] that most genes follow the WG phylogeny. The fact

that this is observed on the autosomes and not on the X phylogeny also supports

that the genomes evolve with two compartments.

Scaffolding and ancestral genome reconstruction.

On the left side of Fig. 3, we can observe a first difference between the results

obtained with the X and the WG phylogenies: the extant scaffolding is slightly

better (in terms of fragmentation level of the extant genomes) with the X phylogeny

(mean segment number is 835 genes for the X phylogeny, versus 840 for the WG

phylogeny), while the ancestral scaffolding is better with the WG phylogeny (mean
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segment number is 1,860 for the X phylogeny, versus 1,756 for the WG phylogeny).

The better extant scaffolding with the X phylogeny can be attributed to the basal

position of the genome with best assembly (A. gambiae) in the Gambiae complex.

Indeed in ADseq the sister species can be assembled according to A. gambiae, but

outgroup species cannot, so the assembly is necessarily better if a fully assembled

genome has more sisters species and less outgroups as it is the case with A. gambiae

in the X phylogeny. Interestingly ancestral genomes are better scaffolded with the

WG phylogeny, even with this sister-branch artifact that concerns extant genomes.

This better ancestral genome reconstruction obtained with the WG phylogeny could

be considered as a first signal contradicting the hypothesis that the X phylogeny is

the true species phylogeny, although it does not allow to draw definitive conclusions.

Conflict.

With both phylogenies we also measured the level of syntenic conflicts, defined as

the sum of the posterior scores of the adjacencies discarded during the linearization

phase (data shown in SI text). We observe a higher level of syntenic conflicts in the

X phylogeny (7,665) than in the WG phylogeny (6,319). According to simulations

(described in SI text), the level of conflict is higher with a wrong phylogeny, even

if it is not with the same order of magnitude than what we observe on our data.

This could be seen as a second element contradicting the sequence-based hypothesis

that the X phylogeny is the true species phylogeny, although the high level of

conflict observed with both phylogenies here again does not allow to draw reliable

conclusions.

Gene movements (translocations).

As it is believed there have been no large-scale rearrangement between the X

chromosome and the autosomes in the Anopheles history [4, 67], we could assign

most extant and ancestral segments (at least almost all that contain more than

one gene) either to the X chromosome or to an autosome, with high accuracy (see

Methods). Then we identified which genes moved from the X chromosome to an

autosome, or conversely, by screening all couples of direct ancestor/descendant genes,

one being in a segment assigned to the X chromosome and the other to an autosome.

We found 429 genes having moved from the X chromosome to an autosome, and 469

from an autosome to the X chromosome, which confirms the trend found by Neafsey

et al. [4] (59 over 132 gene movements originated from the X chromosome), although

we draw our conclusion from experiments using now many more genes than in [4].

Genome rearrangements.

We now turn to detecting genome rearrangements, as defined in the Methods section.

In particular, we stress that we look for breaks and gains of gener adjacencies due

to genome rearrangements such as inversions, transpositions and translocations,

excluding duplications and losses, as well as adjacency breaks and gains due to

duplications and losses. Moreover, due to the fragmented nature of many ancestral

genomes, we expect to underestimate the true number of synteny breaks and gains.

We detect 3,364 gains or breakages of adjacencies (860 in the Gambiae complex )

using the X phylogeny, and 3,176 using the WG phylogeny (590 in the Gambiae com-

plex ). The difference is illustrated in Fig. 4. Between the two competing phylogenies,
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Figure 4 A. species trees (left: X phylogeny, right: WG phylogeny) with rearrangements per
adjacency as branch lengths (×10−3). The pie chart for a given species represents the adjacency
degree of the genes of this species: orange represents genes with no adjacency, light blue genes with
adjacency degree of 1 and green genes with adjacency degree of 2. Moreover, the diameter of each
chart is proportional to the number of genes in the corresponding species.

one can observe a 30% decrease in the number of rearrangements within the Gambiae

complex with the WG phylogeny compared to the X phylogeny. These gains/breaks

of adjacencies can be combined along each branch to detect inversions, defined by

pairs of breaks in the ancestor and pairs of gains in the descendant involving the

same four gene extremities. This lead to the identification of 242 inversions in the

X phylogeny (including 16 inversions in the Gambiae complex, including 4 on the

single lineage to A. gambiae) and 240 inversions with the WG phylogeny, with only

4 in the Gambiae complex, two of them on the branch leading to A. gambiae.

Comparison of sex chromosomes and autosomes evolution.

Sex chromosome and autosomes have different evolutionary modes, according to

duplications and rearrangements. Table 1 summarizes the number of inferred events of

gene duplication and genome rearrangement in the sex chromosomes and autosomes,

depending on the chosen phylogeny.

Event
X phylogeny WG phylogeny

X chr. Autosomes X chr. Autosomes
Duplications 604 5857 606 5553

Rearrangements 415 2949 416 2760
Table 1 Numbers of inferred rearrangements and duplications in the X chromosome and in the
autosomes, according to the phylogeny (X or WG) used as a parameter of ADseq.
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A striking observation is the different behavior of the X chromosome and of the

autosomes regarding duplications and genome rearrangements. We do not count

loss events to compare phylogenies because the absence of genes can be due to the

fragmented assembly and not necessarily to actual gene losses during evolution. This

compartmentalization was observed by [5] for genes and attributed to introgression

in the autosomes; it was also noticed in [4] that the genome rearrangement rate was

much higher in the X chromosome than in autosomes. We observe here a similar

trend. We computed genome rearrangement rates by normalizing the number of

observed gains and breaks of gene adjacencies by the number of gene adjacencies

in the whole set of extant and ancestral genomes; with the X phylogeny we could

observe that the X chromosome has a rearrangement rate equal to 1.46 times the rate

observed in the autosomes, a figure that is similar (1.57) using the WG phylogeny.

The observed higher reate of rearrangement in the X chromosome is in fact likely

higher, as the relative fragmentation of the chromosome X is higher compared to

the autosomes in most species both extant and ancestral (data not shown).

Moreover, we can observe interesting differences between the X andWG phylogenies.

Constantly less events are found on the X chromosome with the X phylogeny, while

less events are found on the autosomes with the WG phylogeny. It seems indeed

that not only do genes follow different histories because of introgression [5], but also

entire chromosomes do. However, the observed compartmentalization alone does not

allow us to specify which part of the genome has followed the species diversification.

As the Gambiae complex is estimated to be 2.2 million years old, it is reasonable

to use parsimony arguments concerning rearrangements (see argument in the next

paragraph). If we do so, we find less rearrangements in total in the WG phylogeny:

even normalized by the number of adjacencies (because an increase in the number

of rearrangements might be the effect of a higher number of adjacencies): 9.15 10−3

for the WG phylogeny versus 9.68 10−3 for the X phylogeny. This means that

rearrangements do not yield the same phylogenetic signal than the one suggested

in [5]), which puzzles the evolutionary scenario in the Gambiae complex [68].

Assessing the relevance of rearrangements parsimony.

The fact that parsimony can give a good account on the phylogeny can be questioned.

Indeed, rearrangements in Anopheles are not uniformly distributed [69], they can

show some degree of convergence, and rearrangements can show inter-species poly-

morphism. To test whether in the Gambiae complex we are in the domain of validity

of parsimony, we compared the gene order of A. gambiae with A. albimanus, which,

following the recent improved assembly of A. albimanus, are the two genomes which

have their genes assigned to chromosomes. We selected all genes with an assignment

to a chromosome, and applied the EM2 distance estimator [70]. It is based on a

non uniform model of genome rearrangements which has proved to give the most

reliable results on mammalian genomes, whose evolution spans a similar amount of

time than the Anopheles genomes. We found an estimation of 1,313 inversions with

the statistical estimator, while the parsimony solution was 1,300 (data not shown).

So the parsimony result is within in the 1% interval of the statistical method, far

from saturation. As A. gambiae and A. albimanus are separated by approximately

79 million years of evolution, we may suppose that, in the 2 or 3 million years that
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have shaped the Gambiae complex, rearrangements were not numerous enough to

contradict parsimony.

Discussion
An important contribution of our work is the unification of two domains of research,

namely genome scaffolding, and the evolution of gene order and ancestral genome

reconstruction. They are usually separated despite the similarity of their objectives

(reconstructing ancestral gene order is akin to a scaffolding procedure if ancestral

genes are considered as contigs). Our work improves on previous works (especially [37,

39,71]) in several aspects. In particular, we integrate elements coming from more

traditional phylogenetic methods, such as gene trees and reconciliations, in order to

be able to handle a large gene complement that includes gene families with complex

evolutionary histories. Another important aspect of our work is the validation

procedure of the scaffolding method. We propose a novel simulation procedure which

takes real sequence data but lowers the coverage and rely on a conservative contigs

assembler to obtain a realistic fragmentation. Using this validation method, we

show that combining both sequence data and comparison with related genomes in a

phylogenetic context produce better scaffolds, at least in the context of Anopheles

genomes.

The benefit of the joint approach that considers in the same framework scaffolding

extant genomes and reconstructing ancestral genomes is evident from both the

improved extant genomes assemblies, where we reduce the fragmentation from

roughly 36,000 segments to below 14,000 segments, and the detection of genome

rearrangements, where we observe again a much better resolution of ancestral

genomes. This allows us to detect a statistically significantly larger number of

genome rearrangements that can not be confused with assembly artifacts. To the

best of our knowledge, ADseq is currently the only method that can process such a

data set with many genomes, most of them provided with fragmented assemblies,

while using a large complement of gene families without being limited by the nature

of the evolution of these families in terms of duplications and losses, and using also

sequencing data. Regarding extant genomes scaffolding, the quality of our results

depends of a set of factors, such as the quality of the initial extant assemblies and

the position in the species phylogeny; we do not gain much for well assembled species

such as A. albimanus which is almost an outgroup, while we refine very well the

assembly of the genomes of species such as A. minimus or A. dirus. It is important

to note that while we rely on sequencing data in the present work, other sources

of data such as genome maps for example could be used to define a prior score for

scaffolding assemblies. In terms of genome rearrangements, we likely underestimates

their actual number due to the fragmentation of the reconstructed ancestral genomes.

This is a consequence the very conservative approach we follow that detects only

rearrangements for which there is a clear support. It remains to see if more realistic

models of genome rearrangements that do not rely on reconstructed ancestral gene

orders would be able to cope, in terms of computational complexity and of robustness

of the detected rearrangements, with both the large number of species considered

here and the level of fragmentation of the extant genomes assemblies. Nevertheless,

the results we obtain support strongly the observation of [4] that the X chromosome

evolves by genome rearrangements at a much higher rate than the autosomes.
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Finally, our work opens the way to several research avenues. Generally, our general

approach that relies on the joint analysis of sequencing data and the comparative

approach to improve the quality of extant genome data could be extended to correct

other types of errors that assembly breakpoints. To cite a specific example, it could

be extended to account for the well known problem of unassembled genes [72], that

create apparent gene loss and rearrangement breakpoints. Other avenues could

include the development of metrics to compare alternative species phylogenies or

the introduction in the evolutionary model of introgression events.
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Université Lyon 1, CNRS, 43 Boulevard du 11 novembre 1918, 24105 Kiel, Germany. 3INRIA Grenoble -
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55. Maňuch J, Patterson M, Wittler R, Chauve C, Tannier E. Linearization of ancestral multichromosomal

genomes. BMC Bioinformatics. 2012;13 Suppl 19:S11.

56. Mandric I, Zelikovsky A. ScaffMatch: scaffolding algorithm based on maximum weight matching.

Bioinformatics. 2015;31(16):2632–2638. Available from:

http://dx.doi.org/10.1093/bioinformatics/btv211.

57. Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Pozdnyakov IA, Ioannidis P, et al. OrthoDB v8 :

update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Research.

2015;43(Database issue):250–256.

58. Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analysis with thousands of taxa and

mixed models. Bioinformatics. 2006;22:2688-2690.

59. Noutahi E, Semeria M, Lafond M, Seguin J, Boussau B, Guéguen L, et al. PLoS ONE, number = 8, publisher
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Supplementary text

The ADseq algorithm: Gibbs-Boltzmann probabilistic framework

The sampling mode of ADseq is based on the following principle. For a given

ADseq instance, let A be the set of all possible evolutionary scenarios that are in the

search space considered by the dynamic programming algorithm. For a given scenario

A ∈ A, we denote by s(A) its parsimony score. For a given pseudo-temperature kT ,

we define the partition function ZA as follows:

ZA =
∑
A inA

e−s(A)/kT

The Gibbs-Boltzmann probability of A is then

P (A) =
e−s(A)/kT

ZA

ADseq can sample solutions from A with each solution A having probability P (A) to

be sampled. In order to sample more frequently parsimonious or near-parsimonious

scenarios, one can then tune the value of kT . While kT decreases toward 0, the

probability mass of the parsimonious scenarios in the Gibbs-Boltzmann distribution

increases, tending toward a uniform distribution over all parsimonious scenarios;

conversely, when kT increases, the Gibbs-Boltzmann distribution evolves toward

the uniform distribution over all scenarios. For extant adjacencies prediction, a

scaffolding propagation index (SPI) parameter, allowing to propagate an extant

adjacency of a species A in species B located in the same clade that species A with

clade size equivalent to the value of SPI parameter, have been fixed to 20 (> 18) to

consider synteny signal from every species during scaffolding procedure. For more

information on ADseq algorithm, see [53].

Genome assemblies and sequencing data of 18 Anopheles genomes data set

Out the 18 Anopheles species, 16 have been sequenced genomes in [4] (see Tab. 2

for Genome assembly name). Paired sequencing data are available and were obtained

from the Sequence Read Archive (SRA) of the NCBI with SRA-toolkit (see Tab. 2

for information on sequencing data). The whole set of 16 species with sequencing

data have two sequencing libraries on a single female mosquito. A Paired-End library

with an insert size of 180bp (called ’fragment’ library) with FR orientation (→←)

and a Mate-Pair library with an insert size of 1.5kbp (called ’jump’ library) with RF

orientation (←→). For 11 of them, a third insert size library of ∼38kbp (called ’fosill’

library) was generated from a pool of hundred mosquitoes to improve the scaffolding

with a FR orientation (→←). ’fosill’ library is a Paired-End sequencing of fosmid

library on Illumina that uses bacterial plasmid to integrate large genome portion

to produce large insert size library (see [73] for more information). ID of Gene sets

used for genome annotation of the 18 Anopheles are given in the Tab. 2. These gene

sets were built by VectorBase in collaboration with J. Craig Venter Institute and/or

the Broad Institute.
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Pipeline to produce input data of ADseq for the 18 Anopheles genomes data set

We developed a pipeline to process available genomic data in input data for ADseq.

Our pipeline is divided in two parts, first part consists to process genome content

data and second part consists to process sequencing data. The pipeline is illustrated

in Fig. 6.

Genome content data processing.

The right part (blue) of the pipeline in Fig. 6 consists to take available genome

content and phylogenetic data on 18 Anopheles dataset to determine the list of

adjacencies between gene contained in gene trees.

Initial filtering of gene families. First step consists to discard gene families for

which, in at least one species, one gene is fully included within another gene, as

such situation do not allow to unambiguously decide the relative position of the two

genes (steps 1 and 2 of Fig. 6). This filter results in 14,981 gene families whose the

content is illustrated in the middle graph of Fig. 8. For overlapping genes, there is no

discarding of their gene families and adjacencies between these genes is determined

by the relative position of their 5’ position on the forward strand.

Computing reconciled gene trees. To handle the issues of erroneous gene trees in

the gene trees dataset produced by Neafsey et al. [4], we inferred new gene trees

from the 14,981 gene families with the protocol described in Fig. 7). For each gene

family, CDS for the genes member of the family, obtained from VectorBase, were

aligned with Muscle [74] (v3.8.425), then Gblocks [75] (v0.91b) was used to select

high confidence alignment sites (columns). 41 families in which some sequences were

not represented in any selected site were discarded at this step (see right graph of

Fig. 8 for gene and species content of the 14 940 families). Maximum likelihood gene

trees were then obtained with RAxML [76] (v8.2.8) with the GTR-GAMMA model,

and 100 bootstrap iterations.

The maximum likelihood gene trees so obtained were then processed with Pro-

fileNJ [59] to correct the topology by possibly changing branches with bootstrap

support lower than 100% by minimizing the number of duplications and losses in a

reconciliation with the considered specie tree.

In the less than one hundred cases where ProfileNJ generated several optimal

solutions, an arbitrary topology was chosen. The result is a set of 14,940 gene trees

representing 183,680 genes.

The resulting unrooted gene trees were then rooted and reconciled with the species

tree using ecceTERA [54]. ecceTERA is a gene tree / species tree parsimony

reconciliation algorithm that associates to every ancestral gene of a gene tree a species

and an evolutionary event (speciation or duplication), choosing an assignment that

minimizes the number of gene duplication and gene loss induced by the assignment.

Given an unrooted gene tree, ecceTERA computes the rooting of the gene tree,

among all possible ones, that minimizes the reconciliation score as defined above.

The algorithm of ecceTERA is an efficient dynamic programming algorithm that

process an unrooted gene tree with n leaves and a given species tree with m leaves

in time O(n2m).
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Observed gene adjacencies were deduced from annotated genes after removing of

those that were not present in gene families, as ADseq relies on gene trees to infer

ancestral and extant adjacencies (step 4 of Fig. 6). For statistics on the number of

contigs and gene before and after the pipeline of data preprocessing, see Tab. 4.

Sequencing data processing.

The left part (green) of the pipeline in Fig. 6 consists to process paired-sequencing

data to obtain weighted potential adjacencies. These adjacencies will be taken in

account by DeCoSTAR for more accurate prediction of new extant adjacencies and

reconstruction of the evolutionary history of genome structure.

First step consisted to trimmed reads with Trimmomatic (v0.36) [60] (step A of

Fig. 6). Then trimmed reads have been mapped with Bowtie2 (v2.2.9) [61] (step B

of Fig. 6). Mapping were done on the three different insert size libraries with option

allowing to take into account all alignments for each reads (see Tab. 2 for library

insert size estimation from mapping). Except for Anopheles arabiensis & Anopheles

merus where the 100 best alignments have been taken into account, due to excessive

time computation (more than one month).

A scaffolding step is done to compute a score between contigs pairs linked with the

scaffolding tool BESST (v2.2.6) [62,63] (Step C of Fig. 6). The following parameters

have been used for BESST: –print scores -z 10000 –min mapq 0. BESST computes

the gap distance between contigs pairs linked by paired-reads for which ones the

distance is inferior to (µ + 3σ), where µ and σ are respectively the mean and the

standard deviation of the insert size library and determined by maximum likelihood

estimation with GapEst [77]. Then the method compute two scores, the link

variation score (πσ) and the link dispersity score (πζ)) for large contigs pairs (with

size superior to (µ + 4σ)). πσ measures of how far observed distances are from

the theoretical distance (where a πσ =1 indicates that observed distances between

contigs given by paired reads are similar to the estimated gap distance by GapEst)

and the πζ measures the similarity of reads distribution on contigs linked (where a

πζ =1 indicates an exact similarity between the reads distribution observed on the

two contigs). The number of scaffolding adjacencies and the scores distribution of

these adjacencies are described in Fig. 10 and 11.

Finally, scaffolding adjacencies of annotated genome contigs pairs with more than

3 links (paired-reads) have been kept, because πζ score computed by BESST works

correctly for scaffolding edges supported by more than 3 links, representing 405,939

directed contigs pairs linked by 4,128,682 scaffolding edges. If we consider only

contigs containing genes present in gene trees i.e scaffolding gene adjacencies, total

count for the whole Anopheles dataset is 68,876 scaffolding adjacencies use as input

of ADseq and linked by 846,045 paired-reads .

Analysis of the newly inferred gene trees.

To evaluate the properties of the gene trees we inferred, we ran ADseq on two sets

of gene trees: the gene trees obtained from Anopheles consortium (called RAW trees

from now) and the gene trees we inferred (called ProfileNJ trees). The results

are strikingly different. For example the RAW gene trees yield 39,194 duplications,

against 6,461 for ProfileNJ gene trees. Fig. 5 summarizes two ancestral genomes
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statistics of interest. On the left-hand side we represent the distribution of the

number of genes in ancestral genomes. Some ancestral genomes can have more

than 30,000 genes in the RAW dataset, three times more than the biggest extant

genome. Numbers are much more reasonable with the ProfileNJ dataset. On the

right-hand side, we illustrate the linearity of ancestral genomes. recall that genomes

do not have to be strictly linear as an output of ADseq (before linearization). We

use the distribution of degrees of ancestral genes, defined as follows: the degree

of a gene is the sum of the ADseq posterior score (that belongs to [0, 1]) of all

adjacencies involving this gene. We use this statistics as a measure of the linearity

of the inferred genomes. The ideal gene degree distribution of a complete error-free

genome assembly is illustrated in the black graph (almost all genes have exactly two

adjacencies and so degree two). It appears clearly that the ProfileNJ distribution

(red graph) is much closer to the ideal than the RAW distribution (blue graph).

All metrics argue in favor of ProfileNJ trees for better ancestral genome inference.

However, the results show gaps between the ideal scenario and ProfileNJ values.

This may be due to a reconciliation with duplications and losses, while a lot of

genes introgress, phylogenetic artifacts (some wrong branches are highly supported

by bootstrap), errors in multiple sequences alignments or in clustering genes into

families, or false positives in ADseq ancestral adjacencies.

The ADseq validation protocol

After species selection and random sampling of sequencing data (steps 1 and 2 of

Fig. 12), reads are mapped with the method Minia (v2.0.3) with default parameter

(except parameter abundance-min fixed to 3) (step 3 of Fig. 12). KmerGenie

(v1.7016) has been used with default parameter to determine the best kmer size

value use as input of Minia (see Tab. 2 for kmer size used). In order to be able to

compare the new assembly with the initial assembly, we aligned the new contigs onto

the initial assembly using BLASTn (v2.4.0+) [78] with BLASTn algorithm (with

-task megablast) and e-value threshold fixed to 1E-10. To transfer gene annotation

from initial to the new assembly, Minia contigs have to be uniquely and confidently

mapped on contigs of reference assembly (step 4 of Fig. 12). To insure these criterion,

two filters have been applied. Filter 1 consists to keep only contig alignment with

identity >= 90% and coverage >= 90%. On the remaining contig alignments only

contigs with an unique optimal score alignment (in identity and coverage) are kept

(Filter 2). Moreover, if alignments of two contigs overlap the same gene, we join

them into a single contig, simulating a scaffolding step based on transcripts (Merging

step). Finally, any gene family for which at least one gene does not align with the

new contigs is completely discarded from the initial data and from the remaining

analysis (Filter 3). See Tab. 3 for assembly statistics at the different filtering step

of the Minia contigs gene annotation. Then, Minia contigs are scaffolded to get

adjacencies with sequencing support (step 5 of Fig. 12). The pipeline is the same

that those used for the analysis of the 18 Anopheles dataset (see Fig. 6 and SI text)

at the exception of the number of read multiple alignments in Bowtie2 limited to

50 to reduce the computation time. After scaffolding step, all input data necessary

for DeCoSTAR are ready. We apply DeCoSTAR on input data with (ADseq)

or without (AD) sequencing data to predict new adjacencies (step 6 of Fig. 6).
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Then, last part of the pipeline consists to compute precision and recall statistics on

predicted adjacencies compare to adjacencies not present in Minia contigs but in

reference contigs.

Comparison of scaffolding accuracy of ADseq, AD and BESST on simulated

fragmented genomes

After genome fragmentation simulation for the three selected species (Anopheles

albimanus, Anopheles arabiensis and Anopheles dirus) and the two reads sampling

(50% and 100%). ADseq, AD and BESST are applied on the 6 datasets (3 species

x 2 reads sampling) to compare the ability of the three methods to scaffolds genome.

For each condition, first step consists to determine list of adjacencies that have

been occulted during genome fragmentation simulation. Set of predicted of the

three scaffolding methods are compared to this list. For BESST, set of predicted

adjacencies corresponds to adjacencies as output of BESST and is not limited to

adjacencies for which BESST compute scores. For AD and ADseq, set of predicted

adjacencies corresponds to predicted adjacencies after linearization of genome on

adjacencies with a posteriori support upper or equal to 0.1, 0.5 or 0.8 (see Methods).

These values have been chosen after drawing the precision and recall statistics

distribution in function of the support threshold filter used for predicted adjacencies.

These distributions are plotted in Fig. 14 (where gene orientation is considered to

determine an adjacency as TP) and Fig. 15 (where gene orientation is not considered

to annotate an adjacency as TP). These distributions show that there are switch for

a threshold value set to 0.5. Under 0.5, ADseq and AD have a lower precision but

stronger recall and for a threshold upper 0.5 a stronger precision and lower recall.
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Supplementary figures

Figure 5 Extant and ancestral genome gene content (left) and ancestral gene degree (right).
Left: Number of genes of extant species (left), ancestral species using the reconciled VectorBase
gene trees (middle), and ancestral species using the reconciled ProfileNJ gene trees (right). Right:
Gene degree distribution of ancestral genes after applying ADseq with the RAW gene trees (blue
graph) and the ProfileNJ gene trees (red graph), compared to the expected gene degree
distribution for theoretical perfectly assembled genomes (black graph). The degree of a gene is
defined as the sum of the ADseq posterior scores of adjacencies involving this gene. Here the value
at coordinate x is the sums of all degrees in the interval [x, x+ 1[
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Figure 6 Pipeline to produce input data for ADseq on 18 Anopheles dataset. The pipeline takes
as input a species tree for the 18 Anopheles species, the whole set of gene families and gene trees
for these species and genomic data (contigs, scaffolds and chromosomes). The goal of the pipeline
is to produce input data for the ADseq algorithm to reconstruct ancestral genome structure and
evolution and to improve extant genome scaffolding. The pipeline is split into two parts: The first
part (Blue one) processes genome content data to obtain extant genome adjacencies. Step 1
detects genes that are included in other genes. In step 2, gene families containing these genes are
filtered out to avoid ambiguity in defining observed extant gene adjacencies. In step 3, gene trees
are inferred from the gene sequences, one gene tree per gene family (see Fig. 7 for more information
on gene trees inference pipeline). Finally, in step 4 genes contained in gene families for which gene
trees have not been inferred are discarded from the analysis (41 gene families containing
representing 1,039 genes). The second part of the pipeline (Green one) processes sequencing data
to obtain scaffolding adjacencies that will be used to improve extant genome assembly with the
ADseq algorithm. Step A trims reads with Trimmomatic to remove low qualities reads and
remaining adapters. In Step B, trimmed reads are mapped onto their respective genome with
Bowtie2 considering all multiple mappings. In Step C, pairs of contigs for which paired-end reads
suggest a possible contiguity along their chromosome are linked with the scaffolding software
BESST, and the resulting potential scaffolding adjacencies are scored according to the BESST
model. Then, in Step 5 scaffolding gene adjacencies are determined from contigs adjacencies
obtained from sequencing data processing part with genes present in gene trees. This results in
scaffolds with observed scored scaffolding adjacencies that are used as input of DeCoSTAR (step
6). See Tab. 4 for a description per species on dataset used for DeCoSTAR.
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Figure 7 Pipeline to improve gene trees inference from homologous gene family. CDS
sequences of genes in gene trees have been obtained from VectorBase database and homologous
gene families deduced from the 14,981 gene trees resulting of step 2 of Fig. 6. Step A consists to
multiple align homologous genes with Muscle with parameter ”-maxiters 2” if a gene sequence
have a size upper than 32,000 bp. In step B, Gblocks was applied on alignments to select high
confidence alignment sites. At this step, 41 gene families have been discarded due to sequences that
were not present in a selected blocks. For step C, RAxML have been used to infer maximum
likelihood gene trees with the GTR-GAMMA model and 100 bootstrap iterations. Finally in step
D, the maximum likelihood gene trees are processed with ProfileNJ to potentially changing
branches with bootstrap support lower than 100% in a DL reconciliation model
(min(Duplication,Loss)) with the species tree [79].
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Figure 8 Distribution, per species, of gene families number (red bars) and number of genes
(blue bars). Left graph: distribution of the 17,780 raw input gene trees corresponding to 212,800
genes. Middle graph: distribution of the 14,981 gene families, containing 184,719 genes, after
discarding families containing included genes (after step 2 of Fig. 6). Right graph: distribution of
the 14,940 gene trees, composed of 183,680 genes, after gene trees inference pipeline (after steps 3
and 4 of Fig. 6).
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Figure 9 Anopheles species trees (X phylogeny) with rearrangements per adjacency as branch
lengths (.10−3), obtained using the RAW gene trees. The pie chart for a given species represents
the adjacency degree of the genes of this species: orange represents genes with no adjacency, light
blue gene with adjacency degree of 1 and green genes with adjacency degree of 2. Moreover, the
diameter of each chart is proportional to the number of genes in the corresponding species.
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Figure 10 Distributions of scaffolding adjacencies scores computed by BESST for scaffolding
adjacencies supported by at least 3 paired reads. Left graph: adjacency scores distribution
between all contigs or scaffolds, over 405,939 scaffolding adjacencies. Right graph: adjacency scores
distribution for contigs and scaffolds with gene corresponding to the 68,876 scaffolding gene
adjacencies considered by DeCoSTAR. Blue bars represent the link variation score, red bars the
link dispersity score and purple bars the mean of the two link scores. For more information on the
link scores see SI text and [70].
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Figure 11 Distributions of scaffolding adjacencies link scores computed by BESST for
scaffolding adjacencies supported by at least 3 paired reads, for each of the 18 Anopheles
species. Upper graphs: distribution of scores all 405,939 potential scaffolding adjacencies. Lower
graphs: distribution of scores for all 68,876 scaffolding gene adjacencies used as input by
DeCoSTAR. Left graphs: distribution of link dispersity scores. Middle graphs: distribution of link
variation scores. Right graphs: distribution of the mean of link variation and dispersity scores. Each
color corresponds to one species and the number between parenthesis in the legend indicates the
number of scaffolding adjacencies inferred by BESST for each species.
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Figure 12 The ADseq validation protocol
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Figure 13 Precision and recall statistics for scaffolding adjacencies on three artificially
fragmented genomes (A.alb: Anopheles albimanus, A.ara: Anopheles arabiensis and A.dir:
Anopheles dirus), when gene orientations are not accounted for. Left graph: results with 50%
of reads. Right graph: results with all reads. The different methods results are plotted with the
precision on the Y axis and the recall on the X axis. For ADseq and AD, results for three different
adjacency support threshold (0.1, 0.5 and 0.8) before genome linearization are plotted and
represented with a color gradient. These results show similar results to Fig. 2 showing that for most
of the predicted adjacencies the three methods infer the correct gene orientation.
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Figure 14 Distributions of precision and recall statistics for new extant adjacencies prediction
on three artificially fragmented genomes compared to reference genome assemblies. Upper
graphs: statistics with a sample of 50% of the reads. Lower graphs: statistics with all reads. Each
graph corresponds to one of the three species for which genome has been fragmented by simulation
(An. albimanus, An. arabiensis and An. dirus). precision and recall statistics are plotted in function
of the threshold applied on the support of predicted adjacencies in ADseq and AD. Genomes are
not linearized in this analysis. Note: To determine a gene adjacency as True Positive (TP), the gene
involved in the adjacency have to be inferred in the proper orientation.
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Figure 15 Similar to Fig. 14 but without accounting for gene orientation.
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Figure 16 Venn diagrams showing adjacencies shared by the three scaffolding methods ADseq,
AD and BESST with a sample of 50% of the reads. Upper Venn diagrams: results for
Anopheles albimanus. Middle Venn diagrams: results for Anopheles arabiensis. Lower Venn
diagrams: results for Anopheles dirus. Left diagrams: False Negative (FN) adjacencies,
corresponding to adjacencies created by the fragmentation process and that have not been
recovered. Center diagrams: results for True Positive (TP) adjacencies. Here, an adjacency is
considered TP if the pair of genes is adjacent in the reference assembly and the orientation of genes
involved in the adjacency is properly recovered. Right diagrams: results for Certain False
Positive (CFP) adjacencies. An adjacency is determined as CFP when the pair of gene does not
belong to the reference assemblies and one of the two genes is not located at a contig extremity in
reference genome, or if the recovered orientation of genes is incorrect. If we consider method
individually, these results show that ADseq outperforms AD and BESST with the lowest number
of FN adjacencies, the largest number of TP adjacencies and the lowest number of CFP adjacencies
(except for An. albimanus where AD has the lowest number of CFP (224 vs. 226 for ADseq).
However, if we combine a posteriori AD and BESST, this performs better ADseq in terms of
recall (higher number of TP adjacencies) but at the expense of a strong decreases of precision
(much higher number of CFP adjacencies).
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Figure 17 Similar to Fig. 16 with all reads included.
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Figure 18 Scatter plot exhibiting scaffolding improvement of the 18 Anopheles genomes by
ADseq with X species tree phylogeny. Right plot is a zoom of a small part of the left graph. Each
color corresponds to one species. For each species, upper part of vertical line corresponds to number
of segments in initial assembly and lower part the number of segments after scaffolding
improvement by ADseq. Circle diameter is proportional to the % of scaffolding improvement of the
genome where scale is displayed in lower right part of the graphs.
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Figure 19 Similar to Fig. 18 with WG species tree phylogeny.
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Figure 20 Similar to Fig. 18 with RAW gene trees instead of ProfileNJ gene trees.
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Supplementary tables
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Species name Assembly name Gene set BioProject Library name SRA ID Median insert size (bp)

An. albimanus AalbS1 AalbS1.1 PRJNA67235
’fosill’ SRX200219 35,557
’jump’ SRX111456 2,408

’fragment’ SRX084279 194

An. arabiensis AaraD1 AaraD1.1 PRJNA67207
’fosill’ SRX200218 36,444
’jump’ SRX111457 2,051

’fragment’ SRX084275 195

An. atroparvus AatrE1 AatrE1.1 PRJNA67233

’fosill’ SRX209222 36,897

’jump’
SRX209384 2,408
SRX209606 2,382

’fragment’
SRX209390 191
SRX209612 191

An. christyi AchrA1 AchrA1.1 PRJNA67213
’jump’

SRX110286 1,242
SRX119723 1,229

’fragment’ SRX084278 195

An. culicifacies AculA1 AculA1.1 PRJNA163119

’jump’
SRX175835 546
SRX334058 1,156

’fragment’

SRX158118 181
SRX182921 182
SRX189771 183
SRX272317 196

An. darlingi AdarC2 AdarC2.2 NA NA NA NA

An. dirus AdirW1 AdirW1.1 PRJNA196855

’fosill’ SRX209221 36,451

’jump’
SRX209379 2,378
SRX209603 2,354

’fragment’
SRX209381 191
SRX209604 191

An. epiroticus AepiE1 AepiE1.1 PRJNA191562
’jump’

SRX209380 854
SRX209614 822

’fragment’
SRX209391 191
SRX209605 191

An. farauti AfarF1 AfarF1.1

PRJNA67229 ’fosill’ SRX349764 404

PRJNA214011
’fosill’

SRX357088 405
SRX357089 405

’jump’ SRX111458 1,976
’fragment’ SRX084280 175

An. funestus AfunF1 AfunF1.1 PRJNA67223

’fosill” SRX209224 36,450

’jump’
SRX209389 2,010
SRX209610 1,979

’fragment’
SRX209387 192
SRX209628 192

An. gambiae AgamP3 AgamP3.8 NA NA NA NA

An. maculatus AmacM1 AmacM1.1 PRJNA67215
’jump’

SRX209385 709
SRX209609 682

’fragment’
SRX209386 191
SRX209629 191

An. melas AmelC1 AmelC1.1 PRJNA163117

’jump’ SRX175836 651

’fragment’
SRX158119 176
SRX184877 177
SRX189770 179

An. merus AmerM1 AmerM1.1 PRJNA67215
’fosill’

SRX349762 37,890
SRX357090 37,880
SRX357091 37,882

’jump’ SRX110236 1,383
’fragment’ SRX084276 195

An. minimus AminM1 AminM1.1 PRJNA67225

’fosill’ SRX209223 36,838

’jump’
SRX209388 2,296
SRX209608 2,272

’fragment’
SRX209383 192
SRX209627 192

An. quadriannulatus AquaS1 AquaS1.1 PRJNA67209
’fosill’ SRX200216 37,429
’jump’ SRX111455 2,137

’fragment’ SRX084277 175

An. sinensis AsinS1 AsinS1.1 PRJNA214011
’fosill’

SRX349763 38,486
SRX357092 37,880
SRX357093 37,882

’jump’ SRX334057 2,373
’fragment’ SRX334056 187

An. stephensi AsteS1 AsteS1.1 PRJNA67219

’fosill’ SRX200217 34,405

’jump’
SRX209378 2,244
SRX209611 2,278

’fragment’
SRX209382 171
SRX209607 171

Table 2 Summary of genome assemblies and sequencing data information.
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Explanations for Table 2. 16 on the 18 Anopheles species have been sequenced in [4] and data are
available on the SRA database of the NCBI (see column 4 and 6 for BioProject and SRA ID). FASTQ
files of paired sequencing data have been obtained with SRA-toolkit. After mapping of paired reads
on reference genome assemblies (column 2), median insert size of libraries have been determined with
package ”CollectInsertSizeMetrics” of Picard Tools (v1.61) (column 7). Column ”Library name” give
information on the sequencing strategies employed in [4]. Where ’fragment’ library corresponds to a
Paired-End library with an expected insert size of 180bp and FR orientation (→←). ’jump’ library
corresponds to a Mate-Pair library with an insert size of 1.5kbp and RF orientation (←→). And ’fosill’
corresponds to a library generated from a pool of hundred mosquitoes to improve the scaffolding with
an expected insert size around 38kbp and FR orientation (→←). Column 3 gives the ID of gene set used
in this study.



Anselmetti et al. Page 40 of 42

Species name Assembly stats Initial assembly
Minia assembly (50% reads)

initial after filter1 after filter2 after merging after filter3

An. albimanus

kmer size NA 75
#CTG 204 93,906 86,698 86,307 5,555 5,547
Size (bp) 170,508,315 170,159,531 167,477,606 167,368,303 69,154,374 69,071,024
#gene) NA 9,030 9,018
N50 (bp) 18,068,499 4,833 4,908 4,911 17,015 17,013
N50 (#gene) NA 2 2
#gene trees NA 14,940 14,915

An. arabiensis

kmer size NA 59
#CTG 1,214 302,287 243,251 238,596 7,974 7,968
Size (bp) 246,567,867 231,833,497 219,419,350 218,591,584 64,718,036 64,675,874
#gene NA 10,274 10,268
N50 (bp) 5,604,218 2,193 2,384 2397 11,132 11,123
N50 (#gene) NA 1 1
#gene trees NA 14,940 14,918

An. dirus

kmer size NA 63
#CTG 1,266 220,053 164,611 160,972 5,892 5,888
Size (bp) 216,307,690 217,905,932 202,370,679 201,700,338 89,145,793 89,115,176
#gene NA 9,789 9,781
N50 (bp) 18,068,499 7,281 8,455 8,521 25,298 25,230
N50 (#gene) NA 2 2
#gene trees NA 14,940 14,846

Species name Assembly stats Initial assembly
Minia assembly (100% reads)

initial after filter1 after filter2 after merging after filter3

An. albimanus

kmer size NA 83
#CTG 204 71,361 64,512 64,179 4,852 4,845
Size (bp) 170,508,315 169,477,186 166,370,462 166,259,421 77,887,807 77,807,527
#gene NA 9,012 9,000
N50 (bp) 18,068,499 7,564 7,688 7,705 21,801 21,801
N50 (#gene) NA 2 2
#gene trees NA 14,940 14,898

An. arabiensis

kmer size NA 72
#CTG 1,214 229,218 184,605 181,423 7,133 7,127
Size (bp) 246,567,867 232,286,601 219,658,117 218,990,676 80,623,434 80,568,561
#gene NA 10,253 10,246
N50 (bp) 5,604,218 4,322 4,838 4,864 17,147 17,147
N50 (#gene) NA 1 1
#gene trees NA 14,940 14,896

An. dirus

kmer size NA 75
#CTG 1,266 210,188 155,771 153,031 5,836 5,829
Size (bp) 216,307,690 220,937,663 202,341,639 201,719,647 91,254,277 91,196,154
#gene NA 9,759 9,748
N50 (bp) 18,068,499 7,666 9,044 9,115 27,134 27,141
N50 (#gene) NA 2 2
#gene trees NA 14,940 14,816

Table 3 Assembly statistics at various stages of the gene annotation step of validation protocol of
ADseq (step 4 of Fig. 12). For each species and annotation step, table gives different assembly
statistics (column2): the number of contigs in the assembly, the size of the assembly in bp and in gene
number, the N50 statistics of the assembly in bp and in gene number (if available) and gene trees
number corresponding to gene present in the assembly (for the two last columns). Column 3 (Initial
assembly) corresponds to the assembly statistics of reference genomes. Columns 4-8 of upper and lower
table corresponds to Minia assembly statistics at different filtering step respectively with 50% reads
sampling and without reads sampling. Column ”initial” corresponds to assembly in output of Minia
algorithm assembly. Minia contigs are then mapped on reference genome to annotate gene of reference
assembly on Minia contigs. Assembly statistics after filter1 corresponds to Minia contigs that have
been mapped on reference assembly with an identity and a coverage >= 90%. Filter2 consists to keep
only contig with an unique optimal alignment (to avoid uncertainty in gene annotation). Column 7
corresponds to Minia assembly statistics after merging of Minia contigs overlapping a same gene
(simulating RNA-seq scaffolding). Then last column corresponds to statistics after filter3 that consists
to discard gene families of genes that have not been mapped on Minia contigs.
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species name

initial dataset post data preprocessing
all contigs contigs with gene contigs with gene

#CTG N50 (bp) #CTG
N50

#gene #CTG
N50

#gene
bp #gene bp #gene

An. albimanus 204 18,068,499 57 18,068,499 1,212 11,911 49 18,068,499 916 9,056
An. arabiensis 1,214 5,604,218 340 5,830,121 348 13,162 273 5,830,121 321 10,298
An. atroparvus 1,371 9,206,694 476 9,206,694 655 13,776 345 9,206,694 512 10,400
An. christyi 30,369 9,057 5,173 17,016 3 10,738 4,731 17,384 2 8,792
An. culicifacies 16,162 22,320 5,715 32,742 4 14,335 4,912 34,064 3 11,213
An. darlingi 2,160 115,168 2,161 115,168 10 10,457 1,951 118,843 9 8,617
An. dirus 1,266 6,906,475 302 7,656,907 543 12,781 231 7,656,907 406 9,883
An. epiroticus 2,673 366,526 1,052 417,110 29 12,078 963 425,117 24 9,855
An. farauti 550 1,196,527 376 1,235,781 84 13,217 349 1,235,781 64 10,239
An. funestus 1,392 671,960 619 702,105 46 13,344 562 703,988 36 10,077
An. gambiae 7 49,364,325 6 49,364,325 2,867 12,810 6 49,364,325 2,339 10,324
An. maculatus 47,797 3,841 12,776 4,751 1 14,835 9,473 5,042 1 10,552
An. melas 20,281 18,041 8,855 21,239 2 16,149 7,723 21,730 2 12,567
An. merus 2,753 342,196 1,078 391,600 886 13,887 997 400,239 23 10,736
An. minimus 678 10,313,149 142 10,313 149 886 12,560 114 10,313,149 682 9,792
An. quad. 2,823 1,641,272 647 1,794,736 95 13,349 538 1,846,441 74 10,289
An. sinensis 11,270 80,738 3,536 103,937 9 14,791 2,944 109,624 7 10,962
An. stephensi 1,110 837,295 502 851,727 57 13,113 473 851,727 44 10,028

All species 144,080 760,870 43,813 1,159,817 45 237,293 36,634 1,272,063 37 183,680

Table 4 Assembly statistics on the 18 Anopheles genomes. Statistics before before processing are
displayed in columns 2-7 and after the pipeline to produce input data for the DeCoSTAR algorithm in
columns 8-11 (see Fig. 6 for illustration of the data preprocessing step). For initial dataset assembly
statistics, columns 2 and 3 present contigs number and N50 statistic in bp for all contigs in genome
assemblies. In columns 4-7, only contigs with at least one gene are considered. Column 4 corresponds
to contigs number with gene in reference assemblies. Columns 5 & 6 represent N50 statistics
respectively in bp and in gene number. Column 7 represent the number of gene in reference genome
assemblies. For genome assemblies used as input of DeCoSTAR, all contigs contains at least one gene.
Column 8 gives the number of contigs after step 4 of Fig. 6. Columns 9 & 10 represent N50 statistics
respectively in bp and in gene number. And column 11 represents the number of gene in genomes taken
as input of DeCoSTAR. The input dataset of DeCoSTAR is composed of 14,940 gene trees (see
Figs. 8 and 7 for more information on gene trees) and 68,876 gene adjacencies with sequence support
(scaffolding gene adjacencies) (see Figs. 10 and 11 for more information on scaffolding adjacencies).
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Species name

Genome assemblies before ADseq Genome scaffolds after ADseq (X topology)
contigs with gene scaffolds with gene

#CTG
N50

#gene #scaffolds
N50

#new adj (#scaff adj)
bp #gene bp #gene

An. albimanus 49 18,068,499 916 9,056 47 18,068,499 916 2 (2)
An. arabiensis 273 5,830 121 321 10,298 216 9,217,108 410 57 (13)
An. atroparvus 345 9,206,694 512 10,400 306 10,083,987 647 39 (12)
An. christyi 4,731 17,384 2 8,792 1,396 95,212 12 3,335 (204)
An. culicifacies 4,912 34,064 3 11,213 1,339 202,550 19 3,574 (1,366)
An. darlingi 1,951 118,843 9 8,617 1,264 197,002 13 687 (NA)
An. dirus 231 7,656,907 406 9,883 176 17,377,229 778 55 (10)
An. epiroticus 963 425,117 24 9,855 369 1,611,558 78 594 (7)
An. farauti 349 1,235,781 64 10,239 169 2,391,621 146 180 (64)
An. funestus 562 703,988 36 10,077 231 2,772,343 127 331 (112)
An. gambiae 6 49,364,325 2,339 10,324 6 49,364,325 2,339 0 (NA)
An. maculatus 9,473 5,042 1 10,552 3,025 30,779 7 6,448 (295)
An. melas 7,723 21,730 2 12,567 2,685 92,676 9 5,038 (165)
An. merus 997 400,239 23 10,736 419 1,183,618 65 578 (391)
An. minimus 114 10,313,149 682 9,792 96 17,164,539 801 18 (7)
An. quadriannulatus 538 1,846,441 74 10,289 294 5,492,301 206 244 (0)
An. sinensis 2,944 109,624 7 10,962 1,325 293,848 20 1,619 (478)
An. stephensi 473 851,727 44 10,028 204 2,772,062 131 269 (0)

All species 36,634 1,272,063 37 183,680 13,567 3,261,557 94 23,068 (3,126)

Species name

Genome assemblies before ADseq Genome scaffolds after ADseq (Whole Genome topology)
contigs with gene scaffolds with gene

#CTG
N50

#gene #scaffolds
N50

#new adj (#scaff adj)
bp #gene bp #gene

An. albimanus 49 18,068,499 916 9,056 47 18,068,499 916 2 (2)
An. arabiensis 273 5,830 121 321 10,298 214 9,972,103 464 59 (14)
An. atroparvus 345 9,206,694 512 10,400 307 10,083,987 647 38 (12)
An. christyi 4,731 17,384 2 8,792 1,408 93,948 12 3,323 (207)
An. culicifacies 4,912 34,064 3 11,213 1,338 208,611 19 3,575 (1,363)
An. darlingi 1,951 118,843 9 8,617 1,265 197,190 14 686 (NA)
An. dirus 231 7,656,907 406 9,883 176 17,377,229 778 55 (10)
An. epiroticus 963 425,117 24 9,855 368 1,662,136 78 595 (7)
An. farauti 349 1,235,781 64 10,239 170 2,391,621 146 179 (63)
An. funestus 562 703,988 36 10,077 232 2,673,183 127 330 (112)
An. gambiae 6 49,364,325 2,339 10,324 6 49,364,325 2,339 0 (NA)
An. maculatus 9,473 5,042 1 10,552 3,023 31,226 7 6,450 (297)
An. melas 7,723 21,730 2 12,567 2,643 94,004 9 5,080 (162)
An. merus 997 400,239 23 10,736 406 1,260,898 65 591 (399)
An. minimus 114 10,313,149 682 9,792 96 17,164,539 801 18 (7)
An. quadriannulatus 538 1,846,441 74 10,289 297 4,868,888 206 241 (0)
An. sinensis 2,944 109,624 7 10,962 1,325 297,247 19 1,619 (475)
An. stephensi 473 851,727 44 10,028 204 2,792,811 131 269 (0)

All species 36,634 1,272,063 37 183,680 13,525 3,261,557 94 23,110 (3,130)

Table 5 Scaffolding statistics on the 18 Anopheles genomes before and after ADseq (with the X
(upper table) and WG (lower table) species phylogenies). The columns 2-5 correspond to assemblies
statistics before running the ADseq algorithm. Column 2 corresponds to the number of contigs in
reference assemblies. The N50 statistic corresponding to the contig size where 50% of the total
assembly length is comprised in contigs with size superior or equal to this value. This metric is
computed with size considerd both in bp (in column 3) and in gene number (in column 4). Column 5
gives the number of genes in genome assemblies give as input to ADseq. Columns 6-9 and 10-13
represent scaffolding statistics of ADseq respectively for X chromosome species tree topology and
Whole-Genome topology. Columns 6 & 10 represent scaffolds number after ADseq. Columns 7 & 11,
and 8 & 12 represent N50 statistics respectively for size in bp and size in gene number. Columns 9 &
13 represent new adjacencies inferred by ADseq (#scaff adj) represent the number of new adjacencies
that are scaffolding adjacencies (i.e. adjacencies with sequence signal proposed by BESST and inferred
by ADseq).
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