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Abstract

‘We describe a new algorithm for the problem of perfect sorting a signed permutation by reversals. The worst-case time complex-
ity of this algorithm is parameterized by the maximum prime degree d of the strong interval tree, i.e., f (d).n®W _ This improves
the best known algorithm which complexity was based on a parameter always larger than or equal to d.
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1. Introduction

Sorting a signed permutation by reversals is an al-
gorithmical problem that has several applications in the
study of genome rearrangements (see [9] for example).
In the classical approach a “good” sequence of reversals
that sorts a given signed permutation is a parsimonious
sequence of reversals. This problem can be solved in
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subquadratic time [10]. Recently, another combinato-
rial framework for sorting by reversals was proposed,
called perfect sorting by reversals [8]. The principle is
to look for a sequence of reversals that do not break any
common interval of the considered signed permutation
and is parsimonious among such sequences of reversals.
This approach can be seen as a variant of the classical
sorting by reversal problem, where the parsimony crite-
rion has been relaxed and the conservation of common
intervals is the main criterion.

The first algorithm proposed for this problem has an
exponential worst-case running time [8]. It was latter
improved in [1] by showing that the problem is fixed
parameterized tractable [6] (FPT): i.e., the complexity
function is f (p).n°® for some parameter p. The para-
meter p proposed in [1] is the number p of prime edges
of the strong interval tree of the signed permutation to
be sorted (see definition in Section 2). The algorithm
proposed in this note is still FPT, but the parameter we
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use is always smaller than or equal to the number of
prime edges. Hence our new algorithm is then the most
efficient, in terms of worst-case time complexity, among
published algorithms solving this problem. One motiva-
tion for having FPT algorithm is that whenever the para-
meter remains small, then the problem is still tractable,
which for the problem we are interested is most likely
to be the case both in real instances and in random in-
stances [5].

2. Preliminaries

We first summarize the combinatorial and algorith-
mical frameworks for perfect sorting by reversals. For a
more detailed treatment, we refer to [1].

2.1. Permutations, reversals, common intervals and
perfect scenarios

A signed permutation on [n] is a permutation on the
set of integers [n] = {1, 2, ..., n} in which each element
has a sign, positive or negative. Negative integers are
represented by placing a bar over them. We denote by
1d, (resp., Id,) the identity (resp., reversed identity) per-
mutation, 1 2...n (resp., 1. .. 2 1). When the number n
of elements is clear from the context, we will simply
write Id or Id.

An interval I of a signed permutation P on [n] is a
segment of consecutive elements of P. The content of
I is the subset of I defined by the absolute values of
the elements of /. Given P, an interval is defined by its
content and from now, when the context is unambigu-
ous, we identify an interval with its content.

The reversal of an interval of a signed permutation
reverses the order of the elements of the interval, while
changing their signs. If P is a permutation, we denote
by P the permutation obtained by reversing the com-
plete permutation P. A scenario for P is a sequence of
reversals that transforms P into Id, or Id,. The length
of such a scenario is the number of reversals it contains.

Two distinct intervals I and J commute if their con-
tents trivially intersect, that is either / C J, or J C I,
or I NJ =@. If intervals I and J do not commute,
they overlap. A common interval of a permutation P
on [n] is a subset of [n] that is an interval in both P and
the identity permutation Id,,. The singletons and the set
{1,2, ..., n} are always common intervals.

A scenario S for P is called a perfect scenario if
every reversal of S commutes with every common inter-
val of P. A perfect scenario of minimal length is called
a parsimonious perfect scenario.

2.2. The strong interval tree

A common interval I of a permutation P is a strong
interval of P if it commutes with every other common
interval of P.

The inclusion order of the set of strong intervals de-
fines an n-leaf tree, denoted by T's(P), whose leaves are
the singletons, and whose root is the interval containing
all elements of the permutation. The strong interval tree
of P can be computed in linear time and space (see [2,3]
for example). We call the tree Ts(P) the strong interval
tree of P, and we identify a vertex of Ts(P) with the
strong interval it represents.

Let I be a strong interval of P and 7 ={Iy, ..., I}}
a partition of the elements of / into maximal strong in-
tervals. The quotient permutation of I, denoted Py, is
defined as follows: i precedes j in P; if any element of
I; is smaller than any element of I;. The vertex I, or
equivalently the strong interval I of P, is either:

(i) Increasing linear, if Py is the identity permutation,
or
(ii) Decreasing linear, if Pj is the reversed identity
permutation, or
(iii) Prime, otherwise.

An edge whose both vertices are prime is called a
prime edge. The prime degree of a prime vertex I, de-
noted deg, (1) is the number of prime edges whose two
vertices are I and a child of I. The maximum prime
degree of Ts(P) is defined as the maximum, over all
prime vertices I of Ts(P), of deg,,(I). See Fig. 1 for an
example of strong intervals tree, linear and prime nodes,
and prime degree.

3. Computing perfect scenarios with the strong
interval tree

3.1. Using the strong interval tree as a guide

We first describe the algorithms given in [1] to com-
pute a perfect scenario for a given signed permutation
P (Algorithms 1 and 2). The basis of the algorithm is to
give signs, + or —, to the vertices of Ts(P) using the
following set of rules:

(S.1) a leaf receives the sign of the corresponding ele-
mentin P;

(S.2) a linear vertex receives + (resp., —) if I is in-
creasing (resp., decreasing);

(S.3) a prime vertex whose parent J is linear receives
the sign of J.
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1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18

.3,4,5.6,7,8,9

10, 11,12, 13, 1

Fig. 1. The strong intervals tree T's(P) of the permutation P = (184253967 12 10 14 13 1 15 17 16 18). Prime and linear vertices are
distinguished by their shape. There are three non-trivial linear vertices, the rectangular vertices, and three prime vertices, the round vertices. There
is only one prime edge shown by the dashed line. The prime degree of T5(P) is one.

Note that these rules can leave some vertices with no
sign, when a prime vertex is child of a prime vertex,
or is the root. A tree whose some (resp., all) vertices
are unsigned (resp., signed) is called ambiguous (resp.,
unambiguous).

In the previous section, quotient permutations have
been defined classically without a consideration about
signs. In the following we need quotient permutations to
be signed—fully or partially, as follows: Let I be a ver-
tex of Ts(P), and {1, ..., I} its children, the sign of
the element i of P; is either the sign of its correspond-
ing node I;, if I; is signed, or is not defined. Therefore,
if Ts(P) is unambiguous, each quotient permutation de-
fined from a vertex of T5(P) is fully signed, otherwise,
if Ts(P) is ambiguous, some quotient permutations are
partially signed, and will need to be completed (see De-
finition 3).

From now on, we consider strong interval trees on
which rules (S.1), (S.2) and (S.3) have been applied and
signed quotient permutations.

It was shown in [1] that, for a given signed permu-
tation P, if Ts(P) is unambiguous, then Algorithm 1
computes a parsimonious perfect scenario for P in
worst-case time O(n,/nlog(n)), while Algorithm 2
can handle the case where Ts(P) is ambiguous in
0O(2”n,/nlog(n)) worst-case time, where p is the num-
ber of unsigned prime vertices in T5(P).

Definition 1. A completion of an ambiguous strong in-
terval tree T is an unambiguous strong interval tree ob-
tained by giving signs to the unsigned vertices of 7.

The correctness of Algorithm 2 (see [1, Theorem 4])
induces the following obvious lemma, that we state for
the sake of completeness, as it will serve as a basis for
the invariant of the algorithm we describe in Section 3.2.

Definition 2. A completion of an ambiguous strong in-
terval tree T is said to be parsimonious if the resulting

S is an empty scenario.
For each prime vertex / of 75(P) Do
Py is the quotient permutation of / over its children
If the sign of [ is positive Then
Compute a parsimonious scenario S’ from P; to Id
Else
Compute a parsimonious scenario S’ from P; to Id
End if
Add to S the sequence of reversals obtained by
replacing in S’ every element by the corresponding
interval in P
End for
Add to S the linear vertices and leaves having a linear parent
and a sign different from the sign of their parent.

Algorithm 1. Computing a parsimonious perfect scenario for 7's (P),
when Ts(P) is unambiguous.

For each of the 27 completions of 75 (P) Do
Apply Algorithm 1 on the resulting unambiguous tree.
End for
Return a parsimonious scenario among the resulting
2P perfect scenarios.

Algorithm 2. Computing a parsimonious perfect scenario for 7 (P)
with p unsigned vertices.

perfect scenario computed with Algorithm 1 is a parsi-
monious perfect scenario among all completions of T'.

Lemma 1. Let Ts(P) be the strong interval tree of a
signed permutation P, signed according to rules (S.1),
(8.2) and (S.3). There exists a parsimonious completion

of Ts(P).
3.2. A more efficient algorithm

The difficulty in computing a parsimonious perfect
scenario then relies on non-root vertices / that are not
signed. Indeed such a vertex I, whose parent J is prime
by definition, having no sign implies that (1) we do not
know if P; has to be sorted towards the identity or the
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reversed identity and (2) the quotient permutation P; of
J is not fully signed. The elements of P; corresponding
to the unsigned children of J are unsigned. Following
Algorithm 2, computing a parsimonious perfect sce-
nario consists of completing accurately an ambiguous
strong interval tree and thereby the corresponding par-
tially signed quotient permutation.

The principle of the new algorithm we propose is
to detect patterns, in an ambiguous 7s(P), that can be
signed in such a way that the resulting completion can
be extended into a parsimonious completion. The key
notion to define such patterns is a classification of par-
tially signed permutations.

Definition 3. Let P be a partially signed permutation on
{1,2,...,n}. A signed permutation P’ is a completion
of P if it is obtained from P by giving signs to all its
unsigned elements.

Definition 4. (1) Let P be a partially signed permuta-
tion. We denote by d* (P) (resp., d~ (P)) the minimum,
over all completions P’ of P, of the reversal distance to
sort P’ into Id (resp., Id). We denote by P (resp., P7)
a completion of P whose reversal distance to /d (resp.,
Id) is minimum.

(2) If dT(P) > d~(P), P is said to be negative. If
dT(P) <d~(P), P is said to be positive. If d*(P) =
d~(P), P is said to be neutral.

(3) We extend naturally the notions defined in (1) and
(2) to a vertex I of Ts(P) by considering its quotient
permutation Pj.

Remark 1. The classification introduced in Definition 4
has been introduced in [8]. It was shown there that for
an ambiguous strong interval tree, there always exists a
parsimonious completion in which every positive vertex
(resp. negative) received a sign + (resp., —). However
the signs defined by rules (S.1), (S.2) and (S.3) can con-
tradict the signs given by Definition 4, as rule (S.3) will
sign positively a negative prime vertex whose parent is
linear increasing. So our algorithm is different in na-
ture of the algorithm described in [8], as it uses first the
strong interval tree, then Definition 4.

The general idea of our algorithm is as follows: when
there is a path of consecutive prime vertices that are un-
signed and neutral, no decision on the signs of these
vertices can be taken, but as soon as such a path ends up
on an ancestral non-neutral or signed vertex, then sign
decision can be made for the whole path.

Let % be the sign (+ or —) of 1
For each child J of I Do
J is given the sign of its associated element of PI*
Propagate the signs in the subtree rooted in J
End for

Algorithm 3. Propagating signs in a compact subtree of T rooted at a
signed vertex /.

Definition 5. Let 7 be an ambiguous strong interval
tree. A subtree of T rooted at a vertex [ is compact if
all unsigned descendants of / are neutral and linked to
I by a path of unsigned neutral vertices.

We now introduce a recursive procedure (Algo-
rithm 3) that propagates signs in a compact subtree
whose root is signed. As proved in Lemmas 2, 3 and
4 below, Algorithm 3 computes a parsimonious com-
pletion of the input compact subtree.

Lemma 2. Let T be an ambiguous strong interval tree.
If T is compact and its root I is unsigned and neutral
then giving either sign (4 or —) to I and propagating
the signs in T using Algorithm 3 produces a parsimo-
nious completion of T.

Proof. We proceed by induction on the maximum
length of a path of unsigned neutral vertices starting
at 1. As by assumption 7T is compact, all unsigned ver-
tices are neutral (see Definition 5).

First assume that all these paths have length 1. Then
the only signs that have to be added to complete T are
on [ and its unsigned children. As all these vertices are
neutral, then sorting each of them into /d or Id makes
no difference on the perfect reversal distance. Thus [/
can be arbitrarily signed and propagating its sign to its
children will produce a parsimonious completion of 7.

Now assume that the longest path of unsigned neutral
vertices starting at / has length k > 1. As [ is neu-
tral, P; can be sorted to either Id or Id using the same
minimum number of reversals. Assume without loss of
generality that I is sorted to Id (i.e., given sign +)
and that sign has been propagated to its descendants.
It follows that its unsigned children have been signed
according to P,"’. By induction, this choice for every un-
signed child of / was parsimonious, which shows that
the completion of T obtained by giving sign + to [ is
parsimonious. O

Lemma 3. Let T be an ambiguous strong interval tree.
If T is compact and its root is signed, then propagating
the signs in T using Algorithm 3 produces a parsimo-
nious completion of T.
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Proof. The proof follows immediately from Lemma 2.
Assume, without loss of generality, that / has sign +.
Using Lemma 2 on the unsigned children of I, that are
all unsigned neutral vertices that root compact subtrees,
we can say that the sign that they are given does not
matter in terms of parsimony: the number of reversals
obtained from the corresponding subtrees with Algo-
rithm 1 is parsimonious. Hence, we only have to ensure
that the number of reversals used to sort the completion
of Py to Id (as I has sign +) is minimal, which follows
from the definition of PI+ . O

Lemma 4. Let T be an ambiguous strong interval tree.
If T is compact and its root I is unsigned and positive
(resp., negative), then signing I with + (resp., —) and
propagating the signs in T using Algorithm 3 produces
a parsimonious completion of T.

Proof. For the same reason than in the proof of Lem-
ma 3, the signs given to the children of / do not prevent
from completing 7' in a parsimonious completion. As-
sume now, that 7 is positive. To ensure the parsimony of
the scenario that will be computed from the completed
tree using Algorithm 1, we want that P; is completed
in such a way that it is sorted using a minimum number
of reversals. As [ is positive, this implies that P; has
to be sorted to Id and can be completed to P;", which
concludes the proof. O

Lemma 5. Let T be an ambiguous strong interval tree.
Let I be an unsigned positive (resp., negative) vertex
of T that roots a compact subtree of T. Then signing
I with + (resp., —) and propagating the signs in the
subtree it roots using Algorithm 3 produces a tree that
can be completed parsimoniously.

Proof. The case where I is the root was proved in
Lemma 4. Now assume that / is not the root, is unsigned
and positive (the case where [ is negative is symmet-
ric). From Lemma 4, the signs given to the unsigned
vertices belonging to the subtree rooted at / complete
parsimoniously this subtree. It then remains to show that
signing I with + does not prevent to complete T par-
simoniously. Let J denote the parent of / and P; its
quotient permutation. Assume that a parsimonious com-
pletion requires that the element of P; corresponding to
I receives sign —. So if I has been given sign +, it will
cost one extra reversal to sort Py, for example, revert-
ing the element corresponding to /. But as [ is positive,
sorting I towards Id instead of towards Id saves one re-
versal. Thereby I could as well received sign + and this
would not prevent a parsimonious completionof 7. O

Traverse T's (P) using a post-order traversal and
For each prime vertex /, visited for the last time
If 7 is not signed Then
Compute all completions of Py,
d*(P),d=(P), P and P .
If 1 is positive (d T (P;) <d ™ (Py)), Then
Sign I with +
Else If [ is negative (dt(P;) >d=(P;)) Then
Sign I with —
Else If / is the root Then
Sign I with an arbitrary sign
Else store with / the permutations P1+ and P, .
End if
End if
If 7 is signed Then
Propagate signs from 7 using Algorithm 3
End if
End for
Apply Algorithm 1 on the resulting unambiguous tree.

Algorithm 4. Computing a parsimonious perfect scenario for 7g (P).

Algorithm 4 computes a parsimonious perfect sce-
nario. The principle is to traverse Ts(P) and to give
signs to the unsigned vertices using the rules described
in Lemmas 2, 3, 4 and 5, before using Algorithm 1 on
the resulting unambiguous tree.

Theorem 1. Let P be a signed permutationon {1, 2, ...,
n} and Ts(P) its strong interval tree. Let d be the max-
imum prime degree of Ts(P). Algorithm 4 computes
a parsimonious perfect scenario for P in space O(n?)

and time O(2%n/n log(n)).

Proof. We first prove that Algorithm 4 computes a par-
simonious perfect scenario for P. We will show that an
invariant of the algorithm is that, at any time, the tree
can be completed parsimoniously and that at the end,
the tree is unambiguous.

Due to the post-order traversal, it is immediate that
when signs are given to unsigned vertices, using the
propagation from the root of a subtree, this subtree is
compact. This implies that after signs have been propa-
gated from a vertex I, then the whole subtree rooted at
I is unambiguous. Hence the tree is unambiguous at the
end of the traversal.

From Lemma 1, at the beginning, 7's (P) can be com-
pleted parsimoniously. Now assume that the current tree
can be completed parsimoniously when signs are given
to some unsigned vertices, by propagating them from a
vertex I that roots a compact subtree. This can happen
only when [ is the root, or is signed or is not neutral. If
I is the root, either signed or unsigned, then Lemmas 2,
3 and 4 ensure that the resulting tree is completed parsi-
moniously. Assume that / is not the root and is signed.
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It follows from Lemma 3 that the signs given in the sub-
tree rooted in / complete parsimoniously this subtree.
As I was signed and the tree could be completed par-
simoniously this ensures that this property still holds
after propagating signs from 7. Finally the case where
I is unsigned and positive or negative follows from
Lemma 5.

The space complexity follows from the fact that with
each unsigned neutral vertex I of Ts(P), we store P,‘|r
and P; in order to be able to propagate the signs with-
out having to re-compute these two completions of Pj.
The time complexity follows from (1) there are O(n)
vertices in Ts(P), (2) the fact that for every unsigned
vertex /, we have to compute all possible completions
of P; to decide if I is positive, negative or neutral,
and (3) the fact that the most efficient known algo-
rithm to sort a signed permutation by reversals has a

O(n./nlog(n)) worst-case time complexity [10]. O
4. Conclusion

Our main result in this note is an algorithm that com-
putes a parsimonious perfect scenario for a signed per-
mutation more efficiently that the algorithm described
in [1]. A very similar use of the notion of positive, neg-
ative and neutral permutations was used in [8], but in
a framework that did not take advantage of the struc-
ture provided by the strong interval tree, in particular to
propagate signs. This property allows to both describe a
simpler algorithm and have a better understanding of its
complexity.

The main algorithmical problem we face for perfect
sorting by reversals, in the framework using the strong
interval tree, is to decide, for every unsigned vertex I,
independently of the other vertices, if this vertex is pos-
itive, negative or neutral. The solution we used in our
algorithm involves trying all completions of P;. Any
advances on this problem of giving signs to a partially
signed permutation in order to minimize the reversal

distance could then be used immediately in our algo-
rithm. However, based on the fact that sorting unsigned
permutations by reversals is NP-hard [4], it is very likely
that this problem is hard too.

Otherwise, aside of some recent works on the class
of signed permutations that has a parsimonious scenario
that is also perfect [7], it seems difficult to optimize the
strong interval tree framework in order to compute per-
fect scenarios in polynomial time for larger classes of
signed permutations.
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