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Perfect sorting by reversals is not always difficult
Sèverine Bérard, Anne Bergeron, Cedric Chauve, and Christophe Paul

Abstract— We propose new algorithms for computing pair-
wise rearrangement scenarios that conserve the combinatorial
structure of genomes. More precisely, we investigate the problem
of sorting signed permutations by reversals without breaking
common intervals. We describe a combinatorial framework
for this problem that allows to characterize classes of signed
permutations for which one can compute in polynomial time a
shortest reversal scenario that conserves all common intervals.
In particular we define a class of permutations for which this
computation can be done in linear time with a very simple
algorithm that does not rely on the classical Hannenhalli-Pevzner
theory for sorting by reversals. We apply these methods to the
computation of rearrangement scenarios between permutations
obtained from 16 synteny blocks of the X chromosomes of the
human, mouse and rat.

Index Terms— Evolution scenarios, reversals, common inter-
vals.

I. INTRODUCTION

THE reconstruction of evolution scenarios based on
genome rearrangements, and in particular reversals and

translocations, has proven to be a powerful tool to understand
the evolution of groups of species. For eukaryotic genomes,
several evolution scenarios have been recently proposed be-
tween vertebrates genomes [10], [11], [32], using the MGR
and GRIMM softwares [9], [39]. These scenarios lead to
interesting insight on the architecture of ancestral genomes,
the evolution pattern across different lineages or the presence
of genome regions prone to be involved in rearrangements
(the so-called “breakpoint reuse” hypothesis) [31], [33], [36].
Putative evolution scenarios based on rearrangements were
also computed on large datasets of prokaryotic genomes
[3], [16]. In this paper, we describe new combinatorial and
algorithmical results for computing such scenarios, based on
the combinatorial problem of sorting by reversals.

Current approaches for sorting by reversals: At the heart
of the computation of such rearrangement scenarios is the
encoding of genomes by signed permutations, where each
element of a permutation represents a genomic segment –
from large synteny blocks in [10] to genes in prokaryotic
genomes analysis [16] –, and the problem of sorting signed
permutations by reversals, introduced by Sankoff [35]: given
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anne.bergeron@uqam.ca

C. Chauve is with (1) the Department of Mathematics, Simon Fraser
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two signed permutations, find a “good” sequence of reversals
that transforms one into the other one. [35]. In the original
approach, a “good” sequence of reversals is a parsimonious
sequence of reversals. This approach was pioneered, among
others, by Hannenhalli and Pevzner, who described a combina-
torial and algorithmical framework, known as the Hannenhalli-
Pevzner theory, leading to polynomial time algorithms for
computing parsimonious sequences of reversals sorting signed
permutations [21]. Later, their approach was refined and
simplified by several authors and the current best algorithm to
compute a parsimonious reversal scenario runs in subquadratic
time [38]. Note that the best algorithm to compute the length
of a parsimonious reversal scenario, known as the reversal
distance, runs in linear time [2], [8].

However, the approach based on parsimonious pairwise sce-
narios suffers from at least two limitations. First, it was shown
in [6] that the number of such scenarios can be exponential,
and it then becomes problematic to pick one in particular.
This problem was also addressed, from a statistical point of
view, in a recent study of reversals scenarios for metazoan
mitochondrial genomes [26]. Another problem is that, when
considering more than two species, that is computing evolution
scenarios based on a given phylogenetic tree, it is often
impossible to compute a multi-species scenario that induces
pairwise parsimonious scenarios. Hence the parsimony con-
straint on computed scenarios has to be relaxed in some way.
A successful way to deal with this problem has been to use the
median approach [9], that still relies on the detection of “good
reversals” in the sense of the Hannenhalli-Pevzner theory for
computing parsimonious scenarios, but allowing to consider
non-optimal reversals. These two problems suggest the need
for combinatorial models and algorithms that allow both to
compute parsimonious and non-parsimonious scenarios.

Perfect sorting by reversals: In the present work, we are
interested in pairwise scenarios between two unichromosomal
genomes, represented by two signed permutations, that do not
break combinatorial structures – defined in terms of genomic
segments – that are present in both permutations. The com-
binatorial structures we consider here are common intervals
of signed permutations [7], [22], [41]. Roughly speaking,
a common interval of two signed permutations is a set of
elements that forms an interval in both permutations, or in
other words, that is conserved in the two permutations up to
local rearrangements. The rationale for this approach is that
the conservation of such groups of genomic segments in two
genomes is a character that is likely to have been present in
the genome of their common ancestor, and is worth to be
considered in the computation of evolution scenarios. One can
consider, for example, common intervals defined by operons
or über-operons in prokaryotic genomes [27]. Note that the
current approaches used to compute rearrangement scenarios
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do sometimes produce scenarios that break common intervals,
see [4].

The precise problem we address, namely perfect sorting
by reversals, is the following: given two signed permutations
and the set of intervals common to these two permutations,
find a shortest sequence of reversals that transforms one
permutation into the other without breaking any of the consid-
ered common intervals. The scenarios that do not break any
common intervals are called perfect scenarios. This approach
can be seen as a variant of the classical sorting by reversal
problem where the parsimony criterion has been relaxed in
order to include the conservation of common intervals. This
problem can be generalized by considering an arbitrary set
of common intervals. These problems were first introduced
by Figeac and Varré [17], who described an exponential time
algorithm solving the latter one. It was later shown that
perfect scenarios that are also parsimonious scenarios can be
computed in polynomial time [4], [34]. Our main result is the
precise description of a combinatorial framework that leads to
polynomial time algorithms to compute perfect scenarios for
large classes of signed permutations.

Plan of the paper: In Section II, we define precisely the no-
tions of reversal, scenario, common interval, and the problem
of perfect sorting by reversals. In Section III, we introduce
the notion of strong intervals of a signed permutation. These
strong intervals form a linear size basis of the set of common
intervals of a permutation. The strong intervals of a signed
permutation can be arranged in a tree structure, called the
strong interval tree, that is a central combinatorial tool to
design algorithms computing perfect scenarios. Note that the
strong interval tree of a permutation has a deep relationship
with the theory of modular decomposition of permutation
graphs [7], [30], that is described in Appendix. In Section IV,
we show that perfect scenarios can be characterized precisely
in terms of the vertices of the strong interval tree, which
makes this structure a “guide” for computing perfect scenarios.
Building on this fact, we propose (1) a subquadratic time al-
gorithm for computing perfect scenarios that are parsimonious
among the set of all perfect scenarios, for large classes of
signed permutations, and (2) an exponential time algorithm
for the general case, where the exponential time behavior is
bounded by a parameter that can be easily read on the strong
interval tree. We also show that our algorithms can be used
to consider only a subset of the common intervals of a signed
permutation. We illustrate our algorithms by computing perfect
scenarios between the X chromosomes of the human, mouse
and rat genomes, already considered in [18]. In Section V,
we extend the results of [4] on a remarkable class of perfect
scenarios, called commuting scenarios, and we show that such
scenarios can be computed in linear time and that the signed
permutations that can be sorted by such scenarios can be
characterized solely in terms of their strong interval tree. We
conclude by some open problems related to perfect scenarios.

II. SORTING BY REVERSALS AND COMMON INTERVALS

In this section, we introduce the main concepts covered in
this paper: signed permutation, reversal, scenario, commuting

reversals, common interval and perfect scenario. A signed per-
mutation on n elements is a permutation on the set of integers
{1, 2, . . . , n} in which each element has a sign, positive or
negative. Negative integers are represented by placing a bar
over them. An interval of a signed permutation is a segment
of consecutive elements of the permutation. An interval can be
defined by the set of its unsigned elements, called its content.
However, not every set of integers corresponds to an interval
of a given permutation P .

The reversal of an interval of a signed permutation reverses
the order of the elements of the interval, while changing their
signs. Note that every reversal is an interval of the permutation
on which it is performed, which leads us to often treat reversals
as intervals, and to represent a reversal by the corresponding
interval. If P is a permutation, we denote by P the permutation
obtained by reversing the complete permutation P .

Example 1: Let P = (1 3 2 5 4 6) be a signed permutation
on 6 elements, then P = (6 4 5 2 3 1). Reversing, in P , the
interval (3 2 5 4), or equivalently the set {2, 3, 4, 5}, yields
the signed permutation (1 4 5 2 3 6).

Definition 1: Let P and Q be two signed permutations on
n elements. A scenario between P and Q is a sequence of
distinct reversals that transforms P into Q, or P into Q. The
length of such a scenario is the number of reversals it contains.
When Q is the identity permutation, a scenario between P and
Q will be simply called a scenario for P .

The fact that the set of scenarios between P and Q contains
sequences of reversals that transform P into Q models the
fact that, in comparative genomics, permutations are used to
represent chromosomes. Reversing a complete chromosome
does not modify its structure.

Example 2: Reversing successively the intervals {2, 3, 5},
{3, 5}, {3}, {4} and {4, 5} is a scenario of length 5 for
permutation P = (1 3 5 2 4 6).

Given a signed permutation P on n elements, the problem
of sorting by reversals, introduced by Sankoff in [35], asks for
a parsimonious scenario, which is a scenario for P of minimal
length among all possible scenarios. The first polynomial time
algorithm solving this problem was given by Hannenhalli and
Pevzner in [21]. Subsequent improvements were proposed,
in particular in [23], [24], and the best known algorithm in
O(n

√
n log(n)) time [38].

Definition 2: Two distinct intervals I and J commute if
their contents trivially intersect, that is either I ⊂ J , or J ⊂ I ,
or I ∩ J = ∅. If intervals I and J do not commute, they
overlap.

Definition 3: Let P be a signed permutation on n elements.
A common interval of P is a set of one or more integers that
is an interval in both P and the identity permutation Idn.
Note that any such set is also an interval of P and of Idn.
The singletons and the set {1, 2, . . . , n} are always common
intervals, and are called trivial common intervals.

Example 3: The common intervals of P = (1 3 2 5 4 6) are
{2, 3}, {1, 2, 3}, {4, 5}, {4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 5, 6},



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6}, and the singletons {1}, . . . ,
{6}.

The notion of common interval was introduced in [41]. It
was studied, among others in [22], to model the fact that
a group of genes can be rearranged in a genome but still
remains connected. It was also studied, in connection with
reversal scenarios, in [4], [34]. In [41], Uno and Yagiura
proposed the first algorithm to compute the set of common
intervals of a permutation P in time O(n + N), where
N is the number of such common intervals. However, N
can be of size O(n2). Heber and Stoye [22] defined the
subset of irreducible common intervals that contains O(n)
common intervals and forms a representation of the common
intervals, in the sense that every common interval is a chain
of overlapping irreducible common intervals. They proposed
an O(kn) time algorithm to compute the set of irreducible
common intervals of k permutations of n elements. A simpler
algorithm is given in [7] (see also [12] for a related work).

Definition 4: Let P be a signed permutation. A scenario
S for P is called a perfect scenario if every reversal of
S commutes with every common interval of P . A perfect
scenario of minimal length is called a parsimonious perfect
scenario.

Note that, if I is a common interval of P and J is an interval
of P that does not commute with I , then reversing J in P
leads to a permutation P ′ such that I is not a common interval
of P ′. Hence, if J belongs to a scenario for P , then the set of
common intervals of P is not conserved during this scenario,
which explains the above definition.

Remark 1: From a biological and evolutionary point of
view, it can be natural to be interested in scenarios that do
not break a precise subset of the common intervals. All our
results apply to this more general problem. However, for the
clarity of the exposition, we will consider perfect scenarios as
defined in Definition 4, and we will refer to Section IV-C for
the general problem.

There always exists a perfect scenario for a given signed
permutation P [17]. However, the authors of [17] claim that
computing a parsimonious perfect scenarios for an arbitrary set
of common intervals is intractable: NP-hard in general. Hence
the difficulty of the problem relies in the parsimonious aspect.
The main goal of this paper is to propose efficient algorithms
to compute parsimonious perfect scenarios for large classes of
signed permutations. Our results rely on the strong interval
tree of a signed permutation described in the next section.

III. STRONG INTERVAL TREE

As the number of common intervals of a permutation P on
n elements can be quadratic in n, an efficient algorithm (i.e.
subquadratic time) for computing perfect scenarios should rely
on a space efficient encoding of the set of common intervals.
This section states structural properties of the set of common
intervals of a permutation P that are central in the design of
the algorithms for computing perfect scenarios. As Section IV-
C considers the same problem, but with respect to a subset of

common intervals, all the following results are special cases
of those presented in Section IV-C. Thus, the proofs will only
be presented in Section IV-C.

It should be noticed that, in [30], the author pointed out
a correspondence between common intervals of permutations
and the concept, well studied in graph theory, of modules
of graphs. Thereby, all the results presented in this section
and in Section IV-C can be seen as direct consequences
or corollaries of well known graph theoretical results about
modules in graphs and modular decomposition of graphs (or
more generally of the framework of partitive set families [29]).
A short description of the link between common intervals and
modules of graphs is given in Appendix.

First, we can remark that being a common interval for an
interval I has nothing to do with the sign of the elements of
I . Therefore all the structural results presented in this section
are valid for both signed and unsigned permutations, and for
the sake of simplicity, we omit the signs.

Let I be a common interval of a permutation P on n
and x ∈ {1, 2, . . . , n} such that x /∈ I . It follows from the
definition of common interval that either x is larger than all
elements of I or x is smaller than all elements of I . The order
relation between x and I will be denoted x < I or I < x.
Similarly, for two disjoint common intervals I and J , I < J
means that any element of I is smaller than any element of
J .

Definition 5: A common interval I of a permutation P is
a strong interval of P if it commutes with every common
interval of P .

Example 4: The strong intervals of permutation P =
(1 4 2 5 3 7 8 6 9) are {2, 3, 4, 5}, {7, 8}, {6, 7, 8},
{1, 2, 3, 4, 5, 6, 7, 8, 9} and the singletons {1}, . . . , {9}. The
singletons and {1, 2, . . . , 9} are the trivial strong intervals of
P .

It follows from Definition 5 that the inclusion order of the
set of strong intervals defines an n-leaf tree, denoted by Ts(P ),
whose leaves are the singletons, and whose root is the interval
containing all elements of the permutation. We call the tree
Ts(P ) the strong interval tree of P (see Fig. 1), and we
identify a vertex of Ts(P ) with the strong interval it represents.
Since each strong interval with more than one element, or
equivalently each internal vertex of Ts(P ), has at least two
children in Ts(P ), a permutation has O(n) strong intervals.
But the most interesting property of the set of strong intervals
is that it forms a ”basis” of the set of common intervals.

Definition 6: Let P be a permutation. A partition I =
{I1, . . . , Ik} of the elements of P into common intervals is a
congruence partition. The quotient permutation associated to
I, denoted P|I , is defined as follows:

(i precedes j in P|I) if and only if (Ii precedes Ij)
Example 5: For the permutation P = (1 4 2 5 3 7 8 6 9) of

Fig. 1, the partition I = {{1}, {2, 3, 4, 5}, {7, 8}, {6}, {9}}
is a congruence partition of P into intervals, and P|I =
(1 2 4 3 5).

As shown below, a congruence partitions for a permutation
P ”inherits” common intervals from P . More formally:
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4 2 5 3 7 8 961

7, 8, 6

7, 84, 2, 5, 3

1, 4, 2, 5, 3, 7, 8, 6, 9

Fig. 1. The strong interval tree Ts(P ) of the permutation P = (1 4 2 5 3 7 8 6 9). Prime and linear vertices (described later in this section) are distinguished
by their shape. There are two non-trivial linear vertices, the rectangular vertices: (7, 8) is increasing and (7, 8, 6) is decreasing. There is only one prime
vertex, the round vertex (4, 2, 3, 5).

Lemma 1: Let I = {I1, . . . , Ik} be a congruence partition
of a permutation P . Then J = {j, . . . , h} is a common interval
of the quotient partition P|I if and only if K =

⋃
j≤i≤h Ii is

a common interval of P .

Proof. ⇒ Assume J is a common interval of P|I . As I is a
partition, each element of P belongs to a unique interval of
I. Let x /∈ K and I` be the common interval of I containing
x (notice that ` /∈ J). Assume by contradiction the existence
of y, y′ ∈ K such that y < x < y′. Then Ih and Ih′ , the
common intervals of I containing respectively y and y′ are
distinct (notice also that h, h′ ∈ J). It follows that, in the
quotient permutation P|I , h < ` < h′, which contradicts the
assumption that J is a common interval of P|I .
⇐ Assume J is not a common interval of P . Then there

exists ` /∈ J and h, h′ ∈ J such that h < ` < h′. Thereby
for any y ∈ Ih and y′ ∈ Ih′ (which both belong to K), there
exists x ∈ I` (i.e. x /∈ K) such that y < x < y′. It follows
that K is not a common interval of P . �

The following decomposition theorem shows the impor-
tance of the congruence partition whose common intervals
are the maximal strong intervals. For permutation P =
(1 4 2 5 3 7 8 6 9), this congruence partition is J =
{{1}, {2, 3, 4, 5}, {6, 7, 8}, {9}}.

Theorem 1: Let P be a permutation on n elements and
I = {I1, . . . , Ik} be the partition of P into maximal strong
intervals of P other than P itself. Then:

1) either any set of consecutive elements in P|I is a
common interval of P|I ;

2) or the only common intervals of P|I are trivial.

Moreover in case 1), either P|I = Idk or P|I = Idk. Thereby
we say that P|I is linear if it satisfies case 1), and prime
otherwise.

Proof. See the proof of Theorem 5. �

Using Lemma 1, the above Theorem applied on the strong
intervals enables us to show that the strong interval tree is
a compact representation – it only requires O(n) space – of
the set of all common intervals, which is possibly a set of
quadratic size.

Proposition 1: An interval I of a signed permutation P is a
common interval if and only if it is either a vertex of Ts(P ), or
the union of consecutive children of a linear vertex of Ts(P ).

Proof. Let I be a common interval of P which is not strong.
By definition of strong intervals, there exists a smallest strong
interval J that contains I , and I commutes with all children of
J , which proves that I is the union of a subset of the children
of J . These children have to be consecutive because I is an
interval of P . Finally, it follows from Theorem 1 that J has to
be linear. Indeed, if J is prime, point 2 of Theorem 1 implies
that any non-singleton subset of children of I is not a common
interval of P .

The converse is a direct consequence of Theorem 1 and
Lemma 1. �

Hence, Theorem 1 induces a classification of the vertices of
the strong interval tree Ts(P ) that is central in our algorithms:
let PI be the quotient permutation defined by the children of
an internal vertex I of Ts(P ). The vertex I , or equivalently
the strong interval I of P , is either:

1) Increasing linear, if PI is the identity permutation, or
2) Decreasing linear, if PI is the reverse of the identity

permutation, or
3) Prime, otherwise.
For example, in Fig. 1, the rectangular vertices are the linear

vertices, and the round vertex (4, 2, 5, 3) is the unique prime
vertex. The only decreasing linear vertex in this tree is (7, 8, 6).

This representation for strong intervals was first given
implicitly in [22], and explicitly in [25], where it was shown
that Ts(P ) can be related to a data structure widely used in
graph theory, called PQ-tree. It can be computed in O(n)
time using algorithms described in [7], [22], [25]. A formal
link between PQ-trees and conserved structures in signed
permutations with application to comparative genomics was
first proposed in [5], in the context of conserved intervals, a
subset of common intervals.

IV. COMPUTING PERFECT SCENARIOS.
We now describe efficient algorithms to compute parsimo-

nious perfect scenarios for large classes of signed permu-
tations. The crux is the use of the strong interval tree as
a guide (we assume it is given, and refer to [7], [12] for
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simple algorithms building this tree.) Indeed, we obtain a
characterization of perfect scenarios of a signed permutation
P in terms of Ts(P ):

Proposition 2: A scenario S for a permutation P is perfect
if and only if each of the reversals of S is either a vertex of
Ts(P ), or the union of children of a prime vertex of Ts(P ).

Proof. Suppose that S is a scenario for permutation P , and
that every reversal of S is either a vertex of Ts(P ), or the
union of children of a prime vertex of Ts(P ). Let I be a
reversal of S. If I is a vertex of Ts(P ), I is a strong interval
and then commutes with every common interval of P . Now,
assume that I is the union of children of a prime vertex J . I
obviously commutes with any common interval not contained
in J , and with any common interval contained in a child of J .
Hence it remains to show that I commutes with any common
interval that is union of children of J , but there are none by
definition of a prime vertex. It follows that I commutes with
every common interval of P , and then S is a perfect scenario.

Conversely, suppose that S is a perfect scenario, let I be
a reversal of S, and consider the partition I1, I2, . . . , Ik of I
in which the part containing an element x of I is the largest
strong interval included in I and that contains x. If k ≥ 2,
then I1, I2, . . . Ik must all be children of a same parent J in
Ts(P ), otherwise I would not commute with the vertices of
Ts(P ) that are parents of Ij’s. If J is a linear vertex, then
I must be equal to J , otherwise I would overlap an interval
formed by a leftover child of J and one of the intervals of I ,
and such an interval is a common interval of P by the points
1 and 2 of Theorem 1. Therefore, either k = 1 and I is a
vertex of Ts(P ), or k > 1 and the vertex J must be prime. �

Computing a perfect scenario S thus amounts to identify
leaves, linear vertices and union of children of prime vertices
of Ts(P ) that are the reversals of S. In the remaining of
this section, we show that, even if the general problem of
computing parsimonious perfect scenarios was claimed to be
difficult [17], it can be done efficiently for a large class of
signed permutations, defined in terms of the structure of their
strong interval tree, as defined below.

Definition 7: A strong interval tree Ts(P ) is unambiguous
if every prime vertex has a linear parent, and ambiguous
otherwise. If Ts(P ) has no prime vertices, it is definite. Note
that a definite tree is unambiguous. ambiguous.

To identify reversals belonging to parsimonious perfect
scenarios, we give a sign to vertices of Ts(P ).

Definition 8: A signed tree is a strong interval tree Ts(P )
in which we associate a sign, + or −, to the vertices according
to the following rules:

1) the sign of a leaf x is the sign of the corresponding
element in P ;

2) the sign of a linear vertex is +, if the vertex is increasing,
and − if the vertex is decreasing;

3) the sign of a prime vertex inherits the sign of its parent
if this latter vertex is linear.

Note that these rules can leave some vertices with no sign.
Fig. 2, 3 and 4 show signed strong interval trees associated

with the permutations obtained by comparing 16 synteny

blocks of the human, mouse and rat X chromosomes [18]1.
In Fig. 2 the labels of the vertices are given with respect to
the order of the blocks of the mouse chromosome.

Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Mouse = 6̄ 5̄ 4 13 14 1̄5 16 1 3̄ 9 1̄0 11 12 7̄ 8 2̄

Rat = 1̄3 4̄ 5 6̄ 1̄2 8̄ 7̄ 2 1 3̄ 9 10 11 14 1̄5 16

A. Computing perfect scenarios with unambiguous trees.

If a tree Ts(P ) is unambiguous, due to the definition of
unambiguous trees and the constraints imposed on signs of
vertices, there is a unique way to affect signs to all the vertices
of Ts(P ). Next Lemma identifies reversals that must belong
to any perfect scenario, thus to any parsimonious perfect
scenario. It applies to all trees, definite, unambiguous and
ambiguous.

Lemma 2 (The Parity Lemma): Let I be a vertex of the tree
Ts(P ) of a signed permutation P . If I has a linear parent and
a sign different from the sign of its parent, then I belongs to
any perfect scenario for P .

Proof. Let S be a perfect scenario, and I be a vertex with
negative sign, whose linear parent J has a positive sign, and
such that I /∈ S. Notice that I can not be prime. Since J is
linear and I /∈ S, by Proposition 2, any reversal of S that
contains I also contains J .

Let m be the number of reversals of S containing J . If
m is even, as J has a positive sign, S sorts P to Id, by
definition of increasing vertices. If I is a leaf, it will still
be negative after an even number of reversals, contradicting
the fact that S sorts P to Id. If I is a linear vertex with a
negative sign (it is decreasing by Definition 8), then its first
child is greater than its last, and will still be after an even
number of reversals, again contradicting that S sorts P to Id.
A symmetric argument holds if m is odd, or if I has a positive
sign, and J a negative sign. �

For definite trees, the parity Lemma yields the following
theorem. We will study the case of permutations whose strong
interval tree is definite in more details in Section V.

Theorem 2: Let P be a signed permutation. If Ts(P ) is
definite, then the set of vertices that have a sign different from
the sign of their parent is a parsimonious perfect scenario for
P . Moreover, no other reversal than these vertices belongs to
a parsimonious perfect scenario for P .

Proof. If Ts(P ) is definite, Proposition 2 implies that a
parsimonious perfect scenario S consists of a set of vertices
of Ts(P ). The Parity Lemma leads to the fact that every
parsimonious perfect scenario is composed of the vertices of
Ts(P ) that have a sign different from their parent. �

Given the tree Ts(P ), Theorem 2 implies that computing
a parsimonious perfect scenario for P is almost immediate,
when Ts(P ) is definite. The comparison of the rat and mouse

1The positions of blocks 5 and 6 in our data differs from [18], following
a correction of the mouse genome assembly.
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X chromosomes yields a definite tree, Fig. 2, and the corre-
sponding scenario can be obtained by comparing the signs of
the O(n) vertices. When such a scenario exists, it is unique
up to the order of the reversals, since each of them commutes
with all the others.

Corollary 1: Let P be a signed permutation on n elements.
If Ts(P ) is definite, then computing a parsimonious perfect
scenario for P can be done in O(n) time.

Proof. Computing Ts(P ) can be done in O(n) time [7], and
it follows from Theorem 2 that the reversal of P can be
computed by a single traversal of Ts(P ) that gives signs to its
vertices. �

We next turn to the more general case of unambiguous trees.
Recall that a prime vertex inherits its sign from its parent,
and that any reversal that is a union of children of a prime
vertex commutes with all common intervals, thus may belong
to a perfect scenario. Algorithm 1 describes how to obtain
a parsimonious perfect scenario in the case of unambiguous
trees. The basic idea is to compute, for each prime vertex I of
the tree, any parsimonious scenario that sorts the children of
vertex I in increasing or decreasing order, depending on the
sign of I . Then, it suffices to deal with linear vertices whose
parent is linear in the same way than for a definite tree.

Algorithm 1: Computing a parsimonious perfect scenario for
unambiguous Ts(P )

S is an empty scenario.
For each prime vertex I of Ts(P )

PI is the quotient permutation of I over its children
If the sign of I is positive Then

compute a parsimonious scenario T from PI to Id
Else compute a parsimonious scenario T from PI to Id
Deduce the corresponding scenario T ′ on the children of PI

Add the reversals of T ′ to scenario S
End for each
Add to S the linear vertices and leaves having a linear parent
and a sign different from the sign of their parent.

Fig. 3 shows the signed tree associated to the permutations
of the human and rat X chromosomes. This tree is unambigu-
ous: it has one prime vertex (4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11)
whose parent is a decreasing linear vertex. The quotient
permutation of this vertex over its five children is PI =
(2 5 3 1 4), and a parsimonious scenario that sorts PI to
Id is given by: {1, 3, 4}, {1, 3}, {1}, {2, 3, 4, 5}, {3, 4, 5}.
Note that if the corresponding five reversals are applied to the
rat chromosome, the resulting permutation has a definite tree.

The time complexity of Algorithm 1 depends on the time
complexity of the sorting by reversals algorithm used to
compute a reversal scenario that sorts the children of a prime
vertex. Using the O(n

√
n log(n)) algorithm described in [38],

we have:

Theorem 3: Let P be a signed permutation on n elements.
If Ts(P ) is unambiguous, Algorithm 1 computes a parsimo-
nious perfect scenario for P in subquadratic O(n

√
n log(n))

time.

Proof. The time complexity bound is obtained by observing
that, first computing Ts(P ) requires O(n) time [7], and second
that the sorting by reversals procedure will be applied on
permutations of size n1, . . . , nk, the number of children of
the k prime vertices of Ts(P ), with n1 + . . . + nk ≤ n,
and the best current sorting by reversals algorithm running
in O(n

√
n log(n)) time [38].

We now prove that the sequence of reversals that is com-
puted is a scenario for P . First, it is immediate that the quotient
permutation of a prime vertex has to be sorted into Id or Id,
according to its sign. This is done during the first phase of the
algorithm, that deals with prime vertices. The argument for
the second phase – leaves and linear vertices whose parent is
linear – is similar to the one used in the proof of Theorem 2.

Finally we prove that the computed scenario is parsimo-
nious among perfect scenarios. Given a parsimonious perfect
scenario, the subsequence of reversals that are contained in
a prime vertex I sorts I in increasing or decreasing order.
Suppose that S′ is a parsimonious scenario shorter than the
scenario S produced by Algorithm 1. Then there is at least
one prime vertex I such that the number of reversals of S′

that are contained in I is less than the number of reversals of
S that are contained in I . Let R and R′ be the subsequences
of reversals of S and S′ that are contained in I . One of R
and R′ sorts I in increasing order, and the other in decreasing
order. Otherwise, one of them would not be parsimonious.
Suppose that the sign of the parent of I is positive, then R
sorts I in increasing order, and R′ sorts I in decreasing order.
By the same argument that was used in the Parity Lemma, I
must belong to S′, and thus to R′, and removing I from S′

produces a shorter scenario, contradicting the hypothesis that
S′ was parsimonious. A similar argument holds if the sign of
the parent of I is negative. �

Remark 2: 1) Any improvement on the complexity of
sorting by reversals will immediately leads to a similar
improvement in the complexity of Algorithm 1.

2) Note that Algorithm 1 can be easily modified in order to
compute the length of a parsimonious perfect scenario
– the perfect distance – in O(n) time, as computing the
reversal distance requires O(n) time [8].

Remark 3: Algorithm 1 and its variant computing the per-
fect distance, as well as the linear time algorithm computing
the strong interval tree of a signed permutation, are avail-
able on-line on the web site of the CGL, at the address
http://cgl.bioinfo.uqam.ca/.

B. Computing perfect scenarios with ambiguous trees.

When Ts(P ) is ambiguous, the sign of some prime vertices
is undefined, but one can then apply the following brute-force
algorithm to sort P . Such an algorithm is a generalization of
the algorithms we described for unambiguous trees and was
described using another formalism in [17]. It has a worst-case
time complexity that is exponential in the number of prime
vertices whose parent is prime, and thus is efficient if the
number of such edges is small.

As an example, consider Fig. 4 that shows the signed tree
associated to the permutations of the human and mouse X



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

Mouse = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rat = 4̄ 3̄ 2̄ 1 1̄3 1̄5 14 1̄6 8 9 10 1̄1 12 5 6 7

15, 14

− − + + + +−

+

4 3 2 1 13 815 14 16

+

9 10 11 12 5 6 7

−

−

++

+

−−

− − + + + +−

4, 3, 2, 1, 13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7

8, 9, 10, 11, 12 5, 6, 7

13, 15, 14, 16

13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7

4, 3, 2, 1

Fig. 2. Comparing the rat and mouse X chromosomes: the set of vertices that have a sign different from the sign of their parent form a parsimonious
perfect scenario that transforms the rat X chromosome into the mouse X chromosome in 11 reversals: (4, 3, 2, 1), (1), (13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7),
(13, 15, 14, 16), (13), (15, 14), (14), (16), (8, 9, 10, 11, 12), (11), (5, 6, 7).

Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rat = 1̄3 4̄ 5 6̄ 1̄2 8̄ 7̄ 2 1 3̄ 9 10 11 14 1̄5 16

13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11, 14, 15, 16

+ +

13 4 5 6 12 8 7 2 1 3 9 10 11 14 15 16

−

− −+

+

+

−

−

+

4, 5, 6 8, 7 2, 1 9, 10, 11

4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11

13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11

+ − − − − + + − + + − +−

2, 1, 3

Fig. 3. Comparing the human and rat X chromosomes: a parsimonious perfect scenario is obtained by sorting the five children (4, 5, 6), (12), (8, 7), (2, 1, 3)
and (9, 10, 11) in decreasing order using any parsimonious scenario that sorts the quotient permutation PI = (2 5 3 1 4), and then reversing the linear
vertices and leaves whose linear parent have a different sign: (13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11), (4), (6), (2, 1), (2), (1), (3), (15). The length of the
scenario is 13.

Algorithm 2: Computing a parsimonious perfect scenario for
ambiguous Ts(P )

Let I1, . . . Ik be the vertices of TS(P ) whose sign is undefined.
For every binary word W of length k do

Give to every unsigned vertex Ij the sign + if W [j] = 1
or the sign − if W [j] = 0.
Apply Algorithm 1 on the resulting signed tree.

End for every
Return a parsimonious scenario among the resulting set of 2k

perfect scenarios.

chromosomes. This tree is ambiguous since its root is a prime
vertex, and we must try to sort this vertex both to Id and to
Id. In this case, both parsimonious scenarios have the same
length.

Theorem 4: Let P be a signed permutation on n elements.
If Ts(P ) is ambiguous with k unsigned vertices, Algorithm 2
computes a parsimonious perfect scenario for P in O(2k ×
n
√

n log(n)) time.

Proof. The parity Lemma and a proof similar than for Theorem
3 prove the statement. �
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Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Mouse = 6̄ 5̄ 4 13 14 1̄5 16 1 3̄ 9 1̄0 11 12 7̄ 8 2̄

81191164 13 14 126

−

7

−

10

−

3

−

15

−+ + + + + + + + +

5

−

6, 5, 4

−

13, 14, 15, 16

+

7, 8

+

−

9, 10, 11, 12, 7, 8

9, 10, 11, 12

+

2

−

6, 5, 4, 13, 14, 15, 16, 1, 3, 9, 10, 11, 12, 7, 8, 2

Fig. 4. Comparing the human and mouse X chromosomes: the root has no sign but its children can be sorted to Id or Id in 6 reversals using a parsimonious
scenario that sorts the quotient permutation PI = (4 6 1 3 5 2). A parsimonious perfect scenario would also contain the reversals: (4), (15), (9, 10, 11, 12),
(10), (7, 8), (7). The total length of the scenario is 12.

Constructing permutations that are hard to perfectly sort,
that is whose strong interval tree is ambiguous, requires
to break almost any structure in a given permutation. The
smallest example of a hard to sort permutation is given in
Fig. 5.

C. Computing perfect scenarios for a subset of common
intervals.

From a practical point of view, it is worth to recall that
the interest in computing scenarios that do not break common
intervals relies on the assumption that genes, or other genomic
markers, cluster in such groups for functional reasons, like co-
transcription for example. However, it is possible that clusters
of genomic markers appear by “chance” in the data, or are not
supported by any functional evidence, and it would then not
be relevant to impose that such intervals should not be broken
during an evolution scenario, which leads to the following
generalization of the problem we addressed until now: Given
a permutation P of length n, its set C of common intervals and
a subset F ⊆ C, find a scenario S for P that does not break any
interval from F and is parsimonious among such scenarios.
We call such a scenario a parsimonious perfect scenario for
P with regard to F . We say that S respects the intervals of
F .

In this section, we show that the algorithms presented in
Sections IV-A and IV-B can be applied to solve this problem
without any modification. To that aim, we show that, given a
set of common intervals, which are believed to be pertinent
from the biological point of view, an interval tree can be
constructed. Moreover this tree has the same properties than
the strong interval tree. For the paper to be self-contained we
propose a proof of this result that generalizes Theorem 1. But
as already mentioned in Section III, it is a special case of
known graph theoretical results (see Appendix).

Definition 9: Let F be a set of common intervals of a
signed permutation P . The closure F∗ of F is the smallest set
of common intervals of P that contains F , all trivial common

intervals of P and such that for any I1 ∈ F∗ and I2 ∈ F∗ if
I1 and I2 overlap, then I1∪I2, I1∩I2, I1\I2 and I2\I1 belong
to F∗.

A simple brute-force algorithm computes this closure in
polynomial time. It is worth to note that the family C of all
common intervals of a signed permutation is closed (C = C∗).

Lemma 3: Let P be a signed permutation and F a set of
common intervals of P . A scenario for P is a perfect scenario
with regard to F if and only if is a perfect scenario with
regard to F∗.

Proof. If a scenario S for P is a parsimonious perfect scenario
with regard to F , then for each pair of overlapping intervals
S respects, say I and J , S respects also I ∪ J , I ∩ J , I\J
and J\I . Therefore, S is also a parsimonious perfect scenario
with regard to F∗. As F ⊆ F∗, the converse is true. �

From now on, we consider the set F∗ and we are interested
in computing a parsimonious perfect scenario for P with
regard to F∗. First, we can notice that the notion of strong
intervals can be used with F∗: an interval of F∗ is strong with
regard to F∗ if it does not overlap with any other interval of
F∗. It follows immediately that we can define (as we did for
Ts(P )) an inclusion tree of the strong intervals of F∗, denoted
by TF∗

s (P ), that, when F∗ = C, turns out to be the strong
interval tree of P . An example of such a tree is depicted in
Figure 6.

We now show that the tree TF∗

s (P ), for a strict subset
F∗ of the common intervals of a signed permutation P ,
has a structure similar to the strong interval tree of P in
terms of prime and linear vertices. The following result is
a generalization of Theorem 1.

Theorem 5: Let P be a permutation on n elements and I =
{I1, . . . Ik} be the congruence partition of P into maximal
strong intervals of F∗other than P itself. Then exactly one of
the following is true:

1) either every union of consecutive elements I = {i, . . . j}
of P|I is a common interval of P|I and K =

⋃
i≤h≤j Ij
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Identity = 1 2 3 4 5 6 7
P = 2 5̄ 7 4 6̄ 1 3

52 7 4 6

−

3

+ − + + +

1

5, 7, 4, 6

2, 5, 7, 4, 6, 1, 3

+

Fig. 5. A hard to sort permutation: if both vertices are sorted in increasing order, or both are sorted in decreasing order, then the resulting perfect scenarios
are not parsimonious.

Mouse = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rat = 4̄ 3̄ 2̄ 1 1̄3 1̄5 14 1̄6 8 9 10 1̄1 12 5 6 7

F*

− − + + + +−

+

4 3 2 1 13 815 14 16

+

9 10 11 12 5 6 7

−

+− −

15, 14

+

+ +

+
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− − + + + +−

4, 3, 2, 1, 13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7

5, 6, 7

13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7

4, 3, 2, 1 8, 9, 10 11, 12

8, 9, 10, 11, 12

Fig. 6. The strong interval tree obtained when comparing the rat and mouse X chromosomes with a subset of their common intervals (intervals (13, 14, 15),
(14, 15, 16), (13, 14, 15, 16), (10, 11), (9, 10, 11), (10, 11, 12), (8, 9, 10, 11) and (9, 10, 11, 12) were removed from the set of common intervals).

belongs to F∗ (moreover either P|I = Idk or P|I =
Idk);

2) or no union of intervals of I belongs to F∗.

Proof. By induction on the size k of P|I . The cases k = 1, 2
and 3 are easy to check. Assume it is true for any value less
than k.

If P|I has a non-trivial common interval I = {i, . . . h}, then
by Lemma 1, K =

⋃
i≤h≤j Ij is a common interval of P . By

definition of I, K cannot be a strong interval of F∗. So either
it does not belong to F∗, or it is not strong for F∗. Assume
K belongs to F∗ (is not strong) and that I has been chosen
maximal for such K.

Therefore there is K ′ ∈ F∗ overlapping K. Moreover K ′

can be chosen as the union of a set I ′ of intervals of I. Let
us consider K ′ (and thus I ′) maximal. As K and K ′ are
maximal and as F∗ is closed, K ∪K ′ = {1, . . . n} and thus
I∪I ′ = {1, . . . k}. Moreover I \I ′ (resp. I ′ \I) is a singleton.
Otherwise K \K ′ (resp. K ′ \K) would be a common interval
of F∗, union of at least two intervals of I. By definition of I
it cannot be a strong interval of F∗. As K ∪K ′ = {1, . . . n},

we could therefore find a common interval of P|I overlapping
both K \ K ′ and K ′ (resp. K ′ \ K and K). But as F∗ is
closed, it would contradict the maximality of K ′ (resp. K).

Now as I \ I ′ and I ′ \ I are singletons, as I ∩ I ′ is a
common interval of P|I , we have I ∩ I ′ = {2, . . . k − 1}
and K ∩K ′ =

⋃
2≤j≤k−1 Ij . So the induction can be applied

on the sub-permutation P ′ of P induced by the elements of
{1 . . . n}\I1 for which the congruence partition into maximal
non-trivial strong interval of F∗ is I ′ = {I2 . . . Ik}. As K∩K ′

belongs to F∗, P ′
|I′ satisfies case 1). To end the proof we need

to show that I1∪ I2 belongs to F∗. The opposite would mean
that the union of I2 and the intervals that follow I2 in P ′ is
not an interval belonging to F∗: contradiction.

Notice that pushing further the induction proof would show
that in case 1) either P|I = Idk or P|I = Idk. This is a
consequence of the fact that {1, 2}, {2 . . . k− 1} are intervals
of P|I . �

From this result, we can deduce immediately that the main
concepts related to the strong interval tree we used in Sections
IV-A and IV-B can be used with TF∗

s (P ), in particular (1) the
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notions of linear (case 1 of Theorem 5) vertices, increasing
and decreasing, and prime (case 2 of Theorem 5) vertices, (2)
the notions of definite, unambiguous and ambiguous strong
interval tree and (3) the definition of the sign of a vertex of
the strong interval tree (Definition 8). The only difference
is that the alternation of increasing and decreasing linear
vertices does not hold anymore. Moreover proofs of the Parity
Lemma and Theorems 2 and 3 do not require that the set
of considered common intervals is the set of all common
intervals of the considered signed permutation P . It follows
immediately, that, if we denote by Algorithm 3 the algorithm
obtained by replacing TS(P ) by TF∗

s (P ) in Algorithm 2, the
following result, generalizes Theorems 2, 3 and 4.

Theorem 6: Let P be a signed permutation of n and F a
set of common intervals of P . Given TF∗

s (P ), Algorithm 3
computes a parsimonious perfect scenario with regard to F in

• O(n) time if TF∗

s (P ) is definite;
• O(n

√
n log(n)) time if TF∗

s (P ) is unambiguous;
• O(2k × n

√
n log(n)) if TF∗

s (P ) is ambiguous with k
unsigned vertices.

V. COMMUTING PERMUTATIONS AND SCENARIOS.

We now consider a class of scenarios, namely commuting
scenarios, that were introduced in the framework of parsimo-
nious scenarios in [4]. We show that the class of commuting
scenarios is a remarkable class of perfect scenarios, as they
correspond exactly to the perfect scenarios for signed permu-
tations whose strong interval tree is definite (Theorem 7).

Definition 10: A scenario S for a signed permutation P is
said to be commuting if every pair of reversals of S commutes.

A remarkable feature of commuting scenarios is that the
order of reversals in such scenarios does not matter. Indeed,
given a commuting scenario S for a signed permutation P , it
follows immediately from Definition 10 that any sequence of
reversals that is a reordering of the reversals of S is a scenario
for P .

Proposition 3: A commuting scenario S for a signed per-
mutation P is a perfect scenario.

Proof. In order to prove the statement, we will prove that every
common interval I of P commutes with all reversals of S.

Since S is a commuting scenario, one can, without loss
of generality, consider that S begins with all the reversals
that commute with I . Applying these reversals leads to a
permutation P ′ such that I is a common interval of P ′. Let S′

be the set of remaining reversals, those that do not commute
with I . As S is a scenario for P , S′ is a scenario for P ′.

If all reversals in S′ are disjoint, there are at most two of
them: one overlaps I on its right extremity and one overlaps
I on its left extremity. Then, as I is a common interval of
P ′, applying them to P ′ leads to a signed permutation that
is not the identity permutation, neither the reversed identity.
This contradicts the fact that S′ is a scenario for P ′.

Suppose that S′ contains at least two non-disjoint intervals
that overlap I on the same extremity, say its right extremity
– the argument is completely symmetrical if we consider

the left extremity. Let J be the largest of the intervals that
intersects I at its right extremity, J ′ the second largest, and
I ′ the non-empty set of elements of I that do not belong to
J . Since S is a commuting scenario, J ′ is strictly contained
in J , and all other reversals of S′ are either disjoint of J
and J ′, or included in J ′. Therefore, J can be partitioned
into three disjoint intervals, J1, J ′ and J2, such that J1 is
contained in I , J2 is disjoint from I , and at least one of
J1 and J2 is non-empty. Applying both J and J ′ to P ′

results in a signed permutation where the elements of J1

are to the right of the elements of J ′ that are themselves
to the right of the elements of J2, that are at the right of
the elements of I ′. Let P ′′ be the resulting permutation.

P ′ = . . . I ′ J1 J ′ J2 . . . −→ P ′′ = . . . I ′ J2 J ′ J1 . . .
By the choice of J and J ′ as the maximal intervals

overlapping the right extremity of I , this structure will remain
unchanged when applying all other reversals of S′ – recall
that none of them contains I by definition of S′ –. If J1 is
not empty, the elements of J2 that are not in I will end up
between I ′ and J1, while if J2 is not empty, the elements of
J1 will end up between I ′ and J ′ ∩ I . This results in a signed
permutation Q such that I is not a common interval of Q, and
then Q can not be the identity of the reversed identity. This
contradicts the fact that S is a scenario for P and completes
the proof. �

Lemma 4: Every reversal of a commuting scenario S for a
signed permutation P is a common interval of P .

Proof. It follows from the non existence of overlapping inter-
vals in commuting scenarios. �

Definition 11: A signed permutation P that can be sorted
by a commuting scenario is said to be a commuting permuta-
tion.

We now state the main result of this section: a characteri-
zation, in terms of the structure of their strong interval tree,
of the class of commuting permutations.

Theorem 7: A signed permutation P is commuting if and
only if its strong interval tree Ts(P ) is definite.

Proof. First, if Ts(P ) is definite, then it follows immediately
from Theorem 2 that every parsimonious perfect scenario for
P is commuting. Indeed, the reversals of such scenarios are the
vertices of Ts(P ), which implies that every pair of reversals
commute.

Now, suppose that P is commuting, and let S be a com-
muting scenario for P . As S is a commuting scenario, it is
a perfect scenario (Proposition 3), and then every reversal of
S is either a linear vertex of Ts(P ) or a set of children of a
prime vertex of Ts(P ) (Proposition 2). Moreover, if there is a
reversal I of S that is a set of children of a prime vertex, and
I is different of this vertex, then I is not a common interval of
P , by definition of prime vertices, which contradicts Lemma
4. Hence, if Ts(P ) contains a prime vertex, no reversal of
S can be a strict subset of the children of this vertex, which
contradicts immediately the fact that S is a scenario for P . It
follows that Ts(P ) does not have prime vertices. �
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Corollary 2: Let P be a commuting permutation. Then
all perfect scenarios for P are commuting, are parsimonious
perfect scenarios, and have the same set of reversals, namely
the vertices of Ts(P ) that have a sign different from their
parent.

Proof. Direct consequence of Proposition 2 and of Theorems
2 and 7. �

We now conclude this section with a few remarks about
commuting scenarios and permutations. First, note that these
notions were introduced in a more restrictive framework, that
is commuting scenarios that are parsimonious, and with no ref-
erence to the strong interval tree, in [4]. In particular, the proof
of Proposition 3 is an immediate extension of a similar result
in [4]. Next, from a combinatorial and algorithmical point of
view, the class of commuting permutations is remarkable for
several reasons, the main ones being stated in Corollary 2.
Moreover this is, as far as we know, the largest non trivial
class of signed permutations that can be sorted (1) in linear
time, as it only requires to construct the strong interval tree
and to perform a single pass on this tree, and (2) without
having to rely on the classical Hannenhalli-Pevzner theory for
sorting by reversals [8], [21]. Finally, the fact that the order of
reversals of commuting scenarios does not matter is a striking
feature, especially as commuting permutations have appeared
in the analysis of real datasets, as for example the comparison
of the mouse and rat X chromosomes described in Section IV,
but also in a comparison of human chromosome 16 and mouse
chromosome 11 [4], [32].

VI. CONCLUDING REMARKS AND FUTURE WORK

Summary of results: We described in this paper a combi-
natorial and algorithmical framework for computing perfect
scenarios, that leads to efficient algorithms for large classes of
signed permutations. From the algorithmic point of view, the
central aspect of our work is the link between the computation
of perfect scenarios and the strong interval tree of a signed
permutation, which can be seen as similar, for the combina-
torial criterion of perfection, of what the overlap graph of
Hannenhalli-Pevzner theory is for the criterion of parsimony.
We also introduced the classes of commuting permutations and
scenarios that has remarkable combinatorial and algorithmical
properties and deserves to be investigated in more details.

Finally, we think that the new insight we bring in this
paper, and especially the introduction of the strong interval
tree, opens the way to many interesting questions, that range
from very combinatorial problems to applications of our
algorithmical tools in the analysis of real datasets. We describe
below some of these questions.

Exponential complexity of the general problem: Despite
the existence of efficient algorithms for computing perfect
scenarios for some classes of permutations, the best known
algorithm for the general problem still runs in exponential
time. However, using the strong interval tree, we are now
able to identify the problematic structures that lead to an
exponential behavior, namely the prime vertices whose parent
is prime. We conjecture that the perfect sorting by reversals
problem is Fixed Parametrized Tractable if we choose as

parameter the maximal prime degree of prime vertices (the
maximal number of prime vertices children of a same prime
vertex). It would mean the complexity to handle permutations
for which this parameter is bounded is actually polynomial.

From a practical point of view, it is relevant to ask wether
if in real datasets the above parameter is bounded or remains
small. A preliminary study of several datasets of eukaryotic
and prokaryotic genomes (results not shown) suggests a pos-
itive answer. Actually all the corresponding strong interval
trees exhibit very few prime vertices whose parent is prime.
However, if it turns that a prime vertex represents genomic
markers that are functionally related, it is likely that the
segment of the chromosome corresponding to this interval is
framed in the genome, either upstream, or downstream, or even
both, by regulatory sequences. It follows that if one considers
these framing sequences in the signed permutation, they could
prevent, in the strong interval tree, that the corresponding
prime vertex has for parent a prime vertex. Recent works that
explore the properties of the chromosomal regions between
synteny blocks are of interest with regard to this problem [34],
[40].

Combining parsimony and conservation of common inter-
vals: In [34], it was shown that when, for a given signed
permutation, there exists a parsimonious scenario that is
also a perfect scenario, computing such a scenario can be
done in polynomial time, extending a previous result of [4].
In the present work, one can, once a parsimonious perfect
scenario has been computed, check whether this scenario is
also parsimonious, using for example one of the linear time
algorithms for computing the reversal distance proposed in
[2], [8]. However, the computation of a parsimonious perfect
scenario can ask for an exponential time depending on the
strong interval tree. In order to close the gap between these
two approaches in computing perfect scenarios, it would be
interesting to characterize, in terms of strong interval trees, the
class of signed permutations for which a parsimonious perfect
scenario is also parsimonious among all possible scenarios.
This problem raises interesting combinatorial questions about
the links between the Hannenhalli-Pevzner theory and the
strong interval tree.

Other applications of the strong interval tree in computing
evolutionary scenarios: In the current study, we considered
only reversals. However, several other evolutionary events
should be considered in computing evolution scenarios, es-
pecially with multi-chromosomal genomes, such as translo-
cations, transpositions or block interchanges [42]. It would
also be interesting to see how the strong interval tree can be
considered in the recent Bayesian approaches to rearrange-
ments scenarios [26]. One could for example ask if perfect
scenarios are more significant than parsimonious scenarios,
or if reversals belonging to perfect scenarios are more likely
to appear in significant scenarios. An interesting question
related to this point would be to study the difference between
reversals given by linear vertices and prime vertices. Since they
have a stronger structure in terms of common intervals, could
reversals corresponding to linear vertices be more significant ?
It is also natural to consider evolution scenarios for more
than two genomes and the median problem, that is one of
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the main tools used for this purpose. For example, it could
be interesting to consider the reversals given by the strong
interval tree as putative evolutionary events along the branches
of a phylogenetic tree, in a similar way reversals given by the
Hannenhalli-Pevzner theory are used in MGR [9].

Alternative applications of the strong interval tree in com-
parative genomics: We believe that the strong interval tree of
a signed permutation is a very versatile tool for comparative
genomics. Indeed, it is immediate to extend this notion to
several genomes, which allows to exhibit conserved structures
in all or part of a given set of genomes. This approach was used
for example to determine putative ancestral genomes without
computing evolution scenarios [1], [5], [13]. Another potential
application would be the identification of so-called evolution-
ary hot-spots for rearrangements, that is genome segments that
are likely to be involved in several rearrangements, a problem
that has been the subject of an intense debate recently [31],
[33], [36]. Indeed, we believe that the structure of the strong
interval tree could be useful to pinpoint genomic regions at
the border of conserved sets of genomic segments. It would
be interesting to investigate the nature of these segments in
the dataset used in [31] for example.
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entifique”, and by grants from NSERC, CNRS and INRA.

APPENDIX
MODULAR DECOMPOSITION OF GRAPHS

In Section III, we mentioned links between common inter-
vals of a pair of permutations and the modular decomposition
of graphs. This appendix is a short presentation of this
correspondence. For further results and complete presentation
of the modular decomposition theory, the interested reader
should refer to [29]. Let us first introduce the graph theoretical
concepts and then establish the links with common intervals.

Definition 12: A module of a graph G = (V,E) is a subset
S of vertices such that any vertex x /∈ S is either adjacent to
any vertex of S or to none of them.

Notice that any singleton vertex set, as well the whole
vertex set of a graph are modules, namely the trivial modules.
A graph whose modules are precisely the trivial modules is
called a prime graph. Any vertex subset of the complete graph
(similarly, of the stable graph2) is also a module. For these
reasons, the complete graph and the stable graph are called
degenerated graphs in the scope of modular decomposition
theory. The last simple cases of modules of a graph are its
connected components or the connected components of its
complement.

A module M is strong if it overlaps no other module, that is
any module M ′ 6= M satisfies either M∩M ′ = ∅ or M ⊂ M ′

or M ′ ⊂ M . It follows that trivial modules are strong modules.
The family of strong modules naturally defines an inclusion
tree, called the modular decomposition tree (see Figure 7 ),
which will be denoted MD(G). Next Lemma states that the

2The complete graph has an edge between any pair of vertices while the
stable graph has no edge at all.

family of strong modules is a basis (or a generating family)
of the set of modules of the graph.

Lemma 5: [29] Any module of a graph G is either a
strong module or the union of strong modules all sons of a
degenerated vertex of MD(G).

Let P = {M1, . . . Mk} be a partition of the vertex set of a
graph G. If for any 1 6 i 6 k, Mi is a module of G, then P
is called a congruence partition. Congruence partitions play
an important role in the modular decomposition theory and its
algorithmic aspects. The first property to be noticed is that if
M and M ′ are modules of a congruence partition, then they
are either adjacent (any vertex of M neighbors any vertex of
M ′) or non-adjacent in G. It follows that given a congruence
partition P , we define its quotient graph, G|P as the subgraph
induced by a vertex set V (G|P) satisfying |V (G|P)∩Mi| = 1
for any 1 6 i 6 k (see Figure 7).

Theorem 8: [14] Let G be a graph and P = {M1 . . .Mk}
the congruence partition containing the maximal non-trivial
strong modules. Then exactly one of the following is true:

1) G is not connected (G|P is the stable)
2) The complement graph of G is not connected (G|P is

the clique)
3) G and its complement are connected (G|P is prime)

A representative graph is associated with any strong module
M : the quotient of the subgraph G[M ] (induced by vertices
of M ) by the congruence partition M of M into maximal
strong modules included in M (see Figure 7). Strong modules
whose representative graphs are a clique or a stable are labeled
degenerate, while the others are labeled prime. To establish the
links between modules of a graph and common intervals, let
us explain how a permutation π naturally defines a graph.

Definition 13: Let π be a permutation of the set {1 . . . n}.
The permutation graph Gπ = (V,Eπ) has vertex set V =
{1 . . . n} and edge set Eπ = {(i, j) | i < j and π(i) > π(j)}.

For example, the graph of Figure 7 is a permutation graph:
it is the graph Gπ with π = (6, 7, 5, 1, 4, 10, 11, 9, 8, 2, 3).
The main observation is established by the following recently
observed property [12], [30]:

Lemma 6: An interval I is a strong common interval of π
if and only if I is a strong module of Gπ .

Theorem 1 and Proposition 1 directly follows as corollaries
of Theorem 8 and Lemma 5. We should finally mention that
the modular decomposition theory is part of a more general
framework of partitive families (see [29]). The algorithmic
aspect of modular decomposition has known many devel-
opments in the last decade. Very efficient algorithms have
been proposed for, given a graph, computing its modular
decomposition tree (see [15], [19], [20], [28]).

Remark 4: Note that definite strong interval trees, that
define commuting permutations (Section V), are also known
as co-trees in the theory of modular decomposition of graphs.
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Fig. 7. A graph G = (V, E) and its modular decomposition tree MD(G). The non-trivial strong modules are {2, 3}, {5, 6, 7}, {10, 11} and {8, 9, 10, 11}.
Any strong module but the module V is degenerated. The representative graph of the root is displayed on its left. That representative graph is the quotient
graph G|P with P = {{1}, {2, 3, 4}, {5}, {6, 7}, {8, 9, 10, 11}}.
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