
Perfect DCJ rearrangement

Sèverine Bérard1,2, Annie Chateau2, Cedric Chauve3, Christophe Paul2,
and Eric Tannier4

1 Université Montpellier 2, UMR AMAP, Montpellier, F-34000 France.
2 CNRS, LIRMM, CNRS UMR55076, Université Montpellier 2, Montpellier, France.

3 Department of Mathematics, Simon Fraser University, Burnaby (BC), Canada
4 INRIA, LBBE, CNRS UMR5558, Université de Lyon 1; Villeurbanne, France.

Abstract. We study the problem of transforming a multichromosomal
genome into another using Double-Cut-and-Join (DCJ) operations. We
introduce the notion of DCJ scenario that does not break families of
common intervals (groups of genes co-localized in both genomes). Such
scenarios are called perfect, and generalize the notion of perfect reversal
scenarios. While perfect sorting by reversals is NP-hard if the family of
common intervals is nested, we show that finding a shortest perfect DCJ
scenario can be answered in polynomial time in this case. Moreover, while
perfect sorting by reversals is easy when the family of common intervals
is weakly separable, we show that the corresponding problem is NP-hard
in the DCJ case. These contrast with previous comparisons between the
reversal and DCJ models, that showed that most problems have similar
complexity in both models.

1 Introduction

A generic formulation of genome rearrangement problems is, given two
genomes and some allowed edit operations, to transform one genome
into the other using a minimum number of operations. The solutions
are used to estimate an evolutionary distance between species, and to
propose possible scenarios that could explain the differences in terms of
gene order between the considered genomes (see [10, 23, 11] for example).
Probably the most used algorithmic results related to genome rearrange-
ments concern the problem of sorting signed permutations by reversals.
This problem aims at computing a shortest sequence of reversals that
transforms one signed permutation into another, and can be solved in
polynomial time [16, 7, 25]. It was later generalized to handle multichro-
mosomal genomes with linear chromosomes, using rearrangements such as
translocations and chromosomes fusions and fissions [17]. Here, we study
a more general rearrangement model on multichromosomal genomes, the
Double-Cut-and-Join model (DCJ), that was considered in several recent
works [28, 8, 2, 20, 21]. In this model, temporary circular chromosomes can

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

Author manuscript, published in "R-CG'08: 6th RECOMB Comparative Genomics Satellite Workshop, Paris : (2008)"

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00327258/fr/
http://hal.archives-ouvertes.fr

be created, which allows to simulate rearrangements such as transposi-
tions and block-interchanges using two consecutive DCJs [28].

Another way (than pure parsimony) of handling gene order data is
to consider groups of genes that are co-localized with the homologous
genes (genes having a single common ancestor) in the genomes of dif-
ferent species.These groups are likely together in the common ancestral
genome and not disrupted during evolution. For two permutations, such
groups of co-localized genes can be modeled by common intervals. Fol-
lowing the assumption that such common intervals are preserved during
evolution leads naturally to the study of rearrangement scenarios that
preserve common intervals. Such scenarios, which may not be shortest
among all scenarios, are called perfect [14]. Computing a reversal scenario
of minimum length that preserves a given subset of the common intervals
of two signed permutations is NP-hard [14] and several papers have ex-
plored this problem, describing families of instances that can be solved in
polynomial time [3, 4, 24, 13] and fixed-parameter tractable algorithms [4,
5].

When comparing algorithmic properties of the reversal and DCJ mod-
els, the classical problems seem to have similar behaviors: the distance
and scenario computations can be solved in polynomial time, yet the best
complexity varies for the latter by an O(

√
n) factor [25, 8]; the median

problems are both NP-hard1. In this paper we extend the notion of per-
fect scenario to the DCJ model. We define a notion of scenario preserving
common intervals that also allows to use the property of the DCJ model
to create temporary circular chromosomes. While the general problem of
computing a shortest DCJ scenario that preserves a family F of com-
mon intervals (the F-perfect rearrangement problem) is still NP-hard,
our results point to interesting differences between the reversal and DCJ
models. If the family of common intervals is nested, we show that finding
a perfect DCJ scenario of minimum length is solvable in polynomial time,
while it is NP-hard for reversals [14]; if the family is weakly separable, we
show that the DCJ problem is NP-hard, while this case was solved in
polynomial time for reversals [4].

The paper is organized as follows: in Section 2, we introduce genomes,
DCJ operations and common intervals. Then in Section 3, we define per-
fect DCJ scenarios for multichromosomal genomes and describe some ba-

1 The median problem consists in, given three genomes as an input, find a fourth
one (the median) that minimizes the sum of the distance from the median to the
three input genomes. This problem has been proved to be NP-hard for permutations
in [12], and for multichromosomal genomes in [26].

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

sic properties of such scenarios. In Section 4, we define the different prop-
erties of families of common intervals, that result in different complexity
status for the perfect rearrangement problems. In Section 5, we describe
a polynomial algorithm for the F-perfect rearrangement problem if F is
nested, and in Section 6, we prove NP-hardness of the general problem.

2 Genomes, intervals and rearrangements

We follow the modeling of a genome used in [8]. A gene a is an oriented
sequence of DNA, identified by its tail at and its head ah. Tails and heads
are the extremities of the genes. An adjacency is an unordered pair of
gene extremities. A genome is a set of adjacencies on a set of genes. Each
adjacency in a genome means that two gene extremities are consecutive on
the DNA molecule. In a genome, each gene extremity is adjacent to zero
or one other extremity. An extremity x that is not adjacent to any other
extremity is called a telomere, and can be written as a telomeric adjacency
xT with a symbol T (we use the same notation for all telomeres).

For a genome Π on a set of genes, we define the graph GΠ : its vertex
set is the set of all gene extremities, and its edge set is composed of atah
for every gene a, plus the adjacencies of Π, except telomeric adjacencies.
An example of such a graph is drawn on Figure 1.

6 10

11

3

h t
t

h

t

ht

h

t

h

1312

ht h t t h t

1144 7 8

h tth h

9 2 5

t h thht

Fig. 1. The graph GΠex , where Πex is given by the union of C1 =
{T12t, 12h4h, 4t14t, 14h1t, 1h7h, 7t8t, 8hT}, C2 = {3t11t, 11h10t, 10h6t, 6h13h, 13t3h}
and C3 = {T9t, 9h2t, 2h5h, 5tT}.

The graph GΠ is composed of disjoint paths and cycles. Each con-
nected component of GΠ is called a chromosome of Π. A chromosome is
said to be linear if it is a path, and circular if it is a cycle.

An interval of Π is a set of genes I, such that the subgraph of
GΠ induced by the extremities of genes in I is connected. For exam-
ple, {12, 4, 14, 1, 7, 8} and {14, 1, 7, 8} are intervals of genome Πex, which
is represented on Figure 1. An interval I is said to be a common interval
of two genomes Π and Γ if it is an interval of both.

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

Given a genome Π, a Double-Cut-and-Join is an operation ρ acting
on two adjacencies pq and rs of Π (p, q, r, s are gene extremities, some
being possibly T symbols; in particular, we consider valid the adjacency
TT). The DCJ operation cuts both pq and rs and joins either pr and qs,
or ps and qr, creating two new adjacencies. Examples of DCJ operations
are shown in Figure 2.

12 4

t hh t

cut

14

t h

12 4

t hh t

14

t h

12 4

t hh t

join

7

t h

1

h t

14

t h

812 4

t hh t h t

14

t h

join

cutcut cut

1 7

thht

I

8

ht

I

1 7

thht

8

ht

t

h

8 7

1

t h

h

t

Fig. 2. Two examples of DCJ operations. Left: the DCJ cuts 4t14t and 7t8t and joins
4t7t and 14t8t (it is a reversal). Right: the DCJ cuts 14h1t and 8hT and joins 14hT
and 8h1t. This operation produces a circular chromosome. The first operation breaks
the interval I = {1, 7, 8} whereas the second preserves it.

A DCJ operation can reverse an interval in a genome, fuse two chromo-
somes into one, fisse one chromosome into two, or exchange two intervals
from two different chromosomes, both containing a telomere (reciprocal
translocation). Two consecutive DCJs may result in a block interchange
(two intervals exchange their positions), or a transposition (if these two
intervals are consecutive): the first DCJ extracts a set of genes and creates
a circular chromosome, while the second DCJ reinserts these genes else-
where in a chromosome. The DCJ operation is thus a very general frame-
work, where temporary circular chromosomes allow to simulate a wide
range of genome rearrangements, introduced by Yancopoulos et al. [28]
and since adopted by many others [8, 20, 1], sometimes under the name
“2-break rearrangements” [2].

A sequence S of k DCJ operations transforming one genome Π into
another genome Γ is called a DCJ scenario of length k for the two
genomes. The minimum number of DCJ operations needed to transform
Π into Γ is the DCJ-distance and denoted by d(Π,Γ).

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

3 Perfect DCJ scenarios

The adjacencies of a genome Π can be partitioned into three classes with
respect to a subset I of its genes: an adjacency pq (p and q possibly being
T symbols) is said to be inside I if the two genes of which p and q are
extremities belong to I; it is called outside if the two genes of which p and
q are extremities do not belong to I; it is a border adjacency if one of the
genes of which p and q are extremities belongs to I but not the other. In
these three definitions, a T symbol is considered to be outside I.

Note that an interval of Π has zero or two border adjacencies. Let
I be any set of genes of a genome Π, which has at most two border
adjacencies. A DCJ acting on Π preserves I if, in the resulting genome,
I still has at most two border adjacencies. For example, on Fig. 2, the
DCJ operation on the left does not preserve the interval {1, 7, 8} but the
operation on the right does preserve this interval. A DCJ that does not
preserve I is said to break I.

Given a family F of common intervals of two genomes Π and Γ , a
DCJ scenario transforming Π into Γ is said to be F-perfect if every DCJ
preserves all intervals in F . The F-Perfect DCJ problem consists in,
given Π, Γ and F , computing a F-perfect DCJ scenario of minimum
length transforming Π into Γ . When genomes are restricted to signed
permutations (they have only one chromosome) and temporary circular
chromosomes are not allowed, this definition coincides with the one of
perfect scenarios of reversals [14, 3–5, 24, 13].

With this definition of F-perfect DCJ scenarios the elements of an
interval I of F can be not consecutive at some point of such a scenario,
provided that the elements of I are split into at most one linear segment
and possibly several circular segments. This allows to use the property of
the DCJ model to create temporary circular chromosomes.

4 Families of common intervals

Given two genomes Π and Γ , two common intervals are said to overlap
if their intersection is not empty and none is contained in the other. A
common interval I of Π and Γ is strong if I does not overlap any other
common interval. It is maximal if it is strong and not contained in another
common interval.

A family F of common intervals is weakly partitive if for every two
overlapping intervals I and J of F , I ∪J , I ∩J , I−J and J− I belong to
F . We denote by F∗ the unique smallest weakly partitive family that con-
tains F ; F∗ can be computed in polynomial time. It follows immediately

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

from [4] that a DCJ scenario is F-perfect if and only if it is F∗-perfect.
A family F is called nested if every element of F is strong (note this im-
plies that F = F∗). F is called weakly separable if every strong interval
of F with at least three elements is the union of two overlapping inter-
vals of F . Of course, as soon as there are intervals of F with at least
three elements, the nested property and the weakly separable property
are mutually exclusive.

By definition, the sub-family of strong intervals of F∗ for a family F
is nested. It follows that we can represent the strong common intervals
of Π and Γ by a forest, in which each node is a strong common interval
of F∗, and its children are the maximal strong common intervals of F∗ it
properly contains (see [4, 18]). Each component of this forest is a rooted
tree, in which the root is a maximal common interval of Π and Γ . An
example of such tree is given in Fig. 3. Given a maximum common inter-
val, the tree can be computed in linear time and space [6, 18]. A node of
the forest of strong intervals is called prime if it has at least four children
and it properly contains no common interval including more than one of
its children. It is linear if it has two elements or it is the union of two
overlapping common intervals, both containing a subset of its children.
Any strong interval of F∗ is either prime or linear (see for instance [4]).

12

12, 4, 14, 1, 7, 8

4 14 1 7 8

4, 14, 1, 7

Fig. 3. The tree that represents the strong common intervals of the maxi-
mal common interval I = {12, 4, 14, 1, 7, 8} of Πex and Γ ex, given by the
union of C1 = {T12t, 12h14h, 14t7h, 7t4t, 4h1h, 1t8t, 8h2t, 2h6t, 6hT} and C2 =
{T9t, 9h3t, 3h10t, 10h5t, 5h11h, 11t13h, 13tT}. Prime nodes are surrounded by an el-
lipse, while linear nodes are framed by a rectangle.

It is known [14] that given a nested family of common intervals F of
two permutations, it is NP-hard to compute a perfect scenario of reversals
of minimum length. Conversely, if F is weakly separable2, the algorithm

2 The terminology weakly separable is inspired by the notion of separable permuta-
tions, that are the permutations whose common intervals with the identity define a
strong interval tree with no prime node. For a weakly separable family of common

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

described in [4] computes an F-perfect reversal scenario in polynomial
time. We prove here the exact opposite results for multichromosomal
genomes with DCJ operations.

5 F nested: A polynomial-time solvable case

We give here an algorithm to solve the F-perfect DCJ problem if F is a
nested family.

Sorting an interval. We say that a common interval I is sorted in Π with
respect to Γ if the set of adjacencies inside I in Π contains the set of
adjacencies inside I in Γ . If a DCJ scenario results in a genome where I
is sorted, we say that this scenario sorts I.

We can distinguish different kinds of DCJ with respect to a common
interval I. A DCJ ρ cuts inside I if it cuts either two inside adjacencies
or one inside and one border adjacency. On the contrary, a DCJ ρ cuts
outside I if it cuts either two outside adjacencies, one outside and one
border adjacency, two border adjacencies, or one inside and one outside
adjacency in the case I does not have any border adjacency. Note that a
DCJ does not break I if and only if it cuts inside or outside I.

Lemma 1. If a DCJ scenario S0 between two genomes Π and Γ does not
break a common interval I, then there exists a DCJ scenario S = S1S2

of same length as S0 for which all operations in S1 cut inside I and all
operations in S2 cut outside I.

This lemma, that is an equivalent to a lemma stated for reversals
in [14], implies that the DCJs that sort I may always be applied before
the ones that rearrange the remaining of the genome.

Outline of the algorithm. The algorithm can be decomposed into three
main steps:

1. Compute the maximal common intervals of Π and Γ . This can be
done by computing the maximal common connected components of
GΠ and GΓ , with techniques presented for example in [15].

2. For each maximal common interval I, compute the tree of (strong)
intervals that lie in I. By a preorder traversal of this tree, sort each
node assuming its children have been sorted, by a technique we de-
scribe further.

intervals, the strong intervals forest can have prime nodes, but no edge can be in-
cident to two prime nodes, and these prime nodes belong to F∗ but not F and are
then only implicitly defined by F .

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

3. Finally, after all maximal common intervals have been sorted, compute
a parsimonious series of DCJ that creates all the remaining adjacencies
of Γ , that are not inside any maximal common interval, for example
with the technique described in [8].

The first and last step use known techniques that are described in
the literature. The core of our method is the second step, which we now
describe into details. Lemma 1 implies that a perfect scenario between
two genomes can be computed during a preorder traversal of each tree of
common intervals in such a way that, when processing a node I, all its
children are already sorted with respect to Γ .

The sorting direction of an interval. We now consider a strong common
interval I of Π and Γ . If I has border adjacencies in Π let xΠ and
yΠ be the extremities of genes that are not in I and belong to the two
border adjacencies of I in Π (they may be T symbols). If I has no border
adjacencies in Π, let xΠ = yΠ = T . If I has border adjacencies in Γ , let
mΓ and MΓ be the extremities of genes that are in I and belong to the
two border adjacencies of I in Γ .

We wish to sort the interval I with respect to Γ , that is we want to
obtain a genome Π ′ from Π which contains every adjacency inside I in
Γ . We will use only DCJs that cut inside I, so in Π ′, there is a limited
number of possibilities regarding the border adjacencies of I in Π ′. If I has
no border adjacencies in Γ , the set of adjacencies in Π ′ is unambiguous:
it is the set of adjacencies inside I in Γ , plus the adjacency xΠyΠ . But if
I has border adjacencies in Γ , there are three possibilities for the border
adjacencies:

1. xΠmΓ and MΓ yΠ are adjacencies in Π ′, and in this case we say that
I is sorted positively ;

2. xΠMΓ and mΓ yΠ are adjacencies in Π ′, and in this case Π is sorted
negatively ;

3. mΓMΓ and xΠyΠ are adjacencies in Π ′, and in this case Π is sorted
neutrally

The way I is sorted is called its sorting direction 3 in Π ′.
We denote by Π \ I+ (resp. Π \ I− and Π \ IN) the genome obtained

from Π, in which I is sorted positively (resp. negatively and neutrally)
3 Note that the notions of positive or negative sorting direction of a common interval

are strongly related to the choice of gene extremities xΠ , yΠ , mΓ and MΓ (two
different choices are possible, and it will swap the positive and negative sorts). We
choose arbitrarily and independently for all strong intervals.

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

with respect to Γ . Note that Π \IN contains a circular chromosome. It is
clear that d(Π \I−, Π \I+) = d(Π \I−, Π \IN) = d(Π \I+, Π \IN) = 1.

As it was shown in [5] for the reversal model, the main difficulty for
sorting a genome while preserving common intervals is to choose among
the sorting directions of these intervals. The following lemma greatly sim-
plifies this choice in the DCJ model.

Lemma 2. Let Π and Γ be two genomes and let I be a set of genes that
has two border adjacencies in Γ and at most two in Π. Then one and
only one of the three following possibilities holds:

– d(Π,Π \ I+) = d(Π,Π \ I−) − 1 = d(Π,Π \ IN) − 1 and d(Π,Γ) =
d(Π,Π \ I+) + d(Π \ I+, Γ);

– d(Π,Π \ I−) = d(Π,Π \ I+) − 1 = d(Π,Π \ IN) − 1 and d(Π,Γ) =
d(Π,Π \ I−) + d(Π \ I−, Γ);

– d(Π,Π \ IN) = d(Π,Π \ I+) − 1 = d(Π,Π \ I−) − 1 and d(Π,Γ) =
d(Π,Π \ IN) + d(Π \ IN , Γ).

The algorithm. This yields a method for sorting a maximal common
interval, where the DCJ operations to apply can be computed using the
algorithm presented in [8]:

Algorithm 1: F-Perfect sorting of a maximal common interval I of genomes Π and Γ ,
given the strong interval tree T of a nested family F of common intervals in I.

LET Π ′ = Π
FOR each interval I ′ ⊆ I of Π and Γ in a post-traversal order of T
{Note: all children of I ′ are sorted}
IF I ′ has no border adjacencies in Γ {Note: possible only if I ′ = I}

Sort I ′ with a minimum number of DCJs inside I ′ and outside its children
Else

Compute k = min(d(Π ′, Π ′ \ I ′+), d(Π ′, Π ′ \ I ′−), d(Π ′, Π ′ \ I ′N))
Sort I ′ with k DCJs inside I ′ and outside its children

LET Π ′ denote the resulting genome.

Lemma 3. Given two genomes Π and Γ , a nested family F of common
intervals and a maximal element I of F , Algorithm 1 computes a DCJ
scenario that sorts I with respect to Γ and preserves all the intervals of
F contained in I. The scenario is minimum, and no scenario achieves
the same number of operations and sorts I with another direction.

Lemma 2, together with Lemma 3, provides the general result:

Theorem 1. Given two genomes Π and Γ on n genes, and a nested
family F of common intervals, a minimum F-perfect scenario of length
d(Π,Γ) can be computed in time O(n2).

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

Note that this result defines a class of instances where a perfect sce-
nario is also parsimonious. These instances are defined only in terms of
the structure of the considered common intervals and not in terms of
their breakpoint graph, which differs from similar results in the reversal
model [3, 24, 13].

6 F general (even weakly separable): A hardness result

In general, the problem of F-perfect DCJ rearrangement is hard, and
even with weakly separable families of common intervals. This is the DCJ
version of NP-hardness for reversals [14], but contrasts with the linear
time solution when F is supposed to be weakly separable [4].

Theorem 2. The F-perfect DCJ problem is NP-hard, even if F is weakly
separable.

The NP-hardness proof relies on a very simple pattern: it uses the fact
that it is possible to sort an interval of shape (3 2 1) in Π and (1 2 3) in
Γ either neutrally or negatively in three operations, and it is impossible
to choose between the two directions. No DCJ scenario sorts this pattern
positively in less than 4 operations, while preserving the intervals {1, 2}
and {2, 3}. From this, we can deduce two interesting remarks that will be
developed in an extended version of this paper:

– The behavior of this perfect DCJ problem is different from the perfect
rearrangement problem where temporary circular chromosomes have
to be reinserted immediately to simulate block-interchanges. Indeed,
for the latter, a block interchange would have sorted (3 2 1) into
(1 2 3) while preserving all intervals. It is not the case when the block-
interchange has to be simulated by two consecutive DCJs. This points
an interesting difference between DCJ problems and block-interchange
problems, and calls for further thoughts on the relationship between
the DCJ model and the reversals and block-interchange model.

– The pattern that causes NP-hardness is limited to linear strong inter-
vals with three elements. It is then possible to devise FPT algorithms
based on the number of such patterns in the genomes. Like the FPT
algorithms for reversals [4, 5], this should lead to efficient algorithms
to solve the perfect DCJ problem.

7 Conclusion

We proved in this paper that F-perfect sorting by DCJ is NP-hard in
general, and even if F is a weakly separable family of common intervals.

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

On the other hand, it has a polynomial time solution when F is nested.
This contrasts with perfect sorting by reversals that is hard if F is nested,
and easy if F is a weakly separable. The key to these results is the ability
of DCJ to create temporary circular chromosomes, that was already the
important factor in the fact that sorting with DCJ is simpler than with re-
versals [8]. This illustrates that the DCJ model, both by its combinatorial
simplicity and its pertinence for modeling genome rearrangements, offers
an interesting way to attack several genome rearrangement problems [22,
27].

In an extended version of this paper, we will describe a fixed parame-
ter polynomial algorithm for the problem of perfect DCJ rearrangement,
using the number of patterns used in the NP-hardness proof as a param-
eter. A natural problem that could benefit from such an algorithm is the
perfect reversal median [9], or perfect DCJ-median [1, 19]. We also plan
to investigate the relationships between the general DCJ model and the
reversal/translocation/block-interchange model, as the problem of com-
puting a perfect scenario seems to be the first one where these two models
differ. This seems to be surprising, as those two models have always been
considered to be equivalent, since two DCJs simulate block-interchanges.
We will also address the case of genomes with circular chromosomes us-
ing the notion of PC-trees [18]. Eventually, the algorithm we describe for
nested families of common intervals runs in quadratic time, but we think
there is a linear time solution, with a smart treatment of prime nodes.

Acknowledgments

C. Chauve is supported by grants from NSERC and SFU. C. Paul is sup-
ported by the ANR grant ANR-O6-BLAN-0148-01 ”GRAAL”. E. Tan-
nier is funded by ANR JC05 49162 “REGLIS” and NT05-3 45205 “GE-
NOMICRO”. A. Chateau is supported by the ANR BLAN07-1 185484
“CoCoGen”.

References

1. Z. Adam and D. Sankoff. The ABC of MGR with DCJ. Evol. Bioinformatics,
4:69–74, 2008.

2. M. Alekseyev and P. Pevzner. Multi-break rearrangements and chromosomal evo-
lution. Theor. Comput. Sci., 2008. In press.

3. S. Bérard, A. Bergeron, and C. Chauve. Conservation of combinatorial structures
in evolution scenarios. In RCG 2004, volume 3388 of LNCS/LNBI, pages 1–14,
2004.

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

4. S. Bérard, A. Bergeron, C. Chauve, and C. Paul. Perfect sorting by reversals is
not always difficult. IEEE/ACM Trans. Comput. Biol. Bioinform., 4:4–16, 2007.

5. S. Bérard, C. Chauve, and C. Paul. A more efficient algorithm for perfect sorting
by reversals. Inform. Proc. Letters, 106:90–95, 2008.

6. A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot. Computing common
intervals of k permutations, with applications to modular decomposition of graphs.
In ESA 2005, volume 3669 of LNCS, pages 779–790, 2005.

7. A. Bergeron, J. Mixtacki, and J. Stoye. Mathematics of Evolution and Phylogeny,
chapter The inversion distance problem. Oxford University Press, 2005.

8. A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrangements.
In WABI 2006, volume 4175 of LNCS/LNBI, pages 163–173, 2006.

9. M. Bernt, D. Merkle, and M. Middendorf. A fast and exact algorithm for the
perfect reversal median. In ISBRA 2007, volume 4463 of LNCS/LNBI, pages 305–
316, 2007.

10. G. Bourque and P. Pevzner. Genome-scale evolution: reconstructing gene orders
in the ancestral species. Genome Res., 12:26–36, 2002.

11. M. Braga, M.-F. Sagot, C. Scornavacca, and E. Tannier. Exploring the solution
space of sorting by reversals with experiments and an application to evolution.
IEEE/ACM Trans. Comput. Biol. Bioinform., 2008.

12. A. Caprara. The reversal median problem. INFORMS J. Comp., 15:93–113, 2003.

13. Y. Diekmann, M.-F. Sagot, and E. Tannier. Evolution under reversals: Parsimony
and conservation of common intervals. IEEE/ACM Trans. Comput. Biol. Bioin-
form., 4:301–109, 2007.

14. M. Figeac and J.-S. Varré. Sorting by reversals with common intervals. In WABI
2004, volume 3240 of LNCS/LNBI, pages 26–37, 2004.

15. M. Habib, C. Paul, and M. Raffinot. Common connected components of interval
graphs. In CPM 2004, volume 3109 of LNCS, pages 347–358, 2004.

16. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. J. ACM, 46:1–27, 1999.

17. S. Hannenhalli and P. A. Pevzner. Transforming men into mice: polynomial algo-
rithm for genomic distance problem. In FOCS 1995, pages 581–592, 1995.

18. W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrangements. Theor.
Comput. Sci., 296:99–116, 2003.

19. R. Lenne, C. Solnon, T. Stutzle, E. Tannier, and M. Birattari. Reactive stochas-
tic local search algorithms for the genomic median problem. In EVOCOP 2008,
volume 4972 of LNCS, pages 266–276, 2008.

20. Y. Lin and al. An efficient algorithm for sorting by block-interchange and its
application to the evolution of vibrio species. J. Comput. Biol., 12:102–112, 2005.

21. L. Lu, Y. Huang, T. Wang, and H.-T. Chiu. Analysis of circular genome rearrange-
ment by fusions, fissions and block-interchanges. BMC Bioinformatics, 7:295, 2006.

22. J. Mixtacki. Genome halving under DCJ revisited. In COCOON 2008, 2008.

23. W. Murphy and et al. Dynamics of mammalian chromosome evolution inferred
from multispecies comparative maps. Science, 309:613–617, 2005.

24. M.-F. Sagot and E. Tannier. Perfect sorting by reversals. In COCOON 2005,
volume 3595 of LNCS, pages 42–51, 2005.

25. E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by reversals.
Discrete Appl. Math., 155:881–888, 2007.

26. E. Tannier, C. Zheng, and D. Sankoff. Multichromosomal genome median and
halving problems. In Proceedings of WABI’08, 2008.

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

27. R. Warren and D. Sankoff. Genome halving with double cut and join. In APBC
2008, pages 231–240, 2008.

28. S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permuta-
tions by translocation, inversion and block interchange. Bioinformatics, 21:3340–
3346, 2005.

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

A The DCJ distance and the breakpoint graph

The formula for the DCJ distance based on the breakpoint graph is much
used in the proofs of our results. The breakpoint graph of two genomes Π
and Γ on the same set of genes, denoted by BP (Π,Γ), is the bipartite
graph which vertex set is the set of extremities of the genes, and in which
there is an edge between two vertices x and y if xy is an adjacency in
either Π (these are Π-edges) or Γ (Γ -edges). Note that T symbols do not
participate. Vertices in this graph have degree zero, one or two; so the
graph is a set of paths and cycles, where some paths may have no edge
(see Fig. 4).

t h h t t h t h h t t h

12 4 14 1 7 8

t h h

13 6

t

10

h t h

11

t t

3

h t h t h h t

9 2 5

Fig. 4. The breakpoint graph of the genomes Πex (see Figure 1) and Γ ex, given by
the union of C1 = {T12t, 12h14h, 14t7h, 7t4t, 4h1h, 1t8t, 8h2t, 2h6t, 6hT} and C2 =
{T9t, 9h3t, 3h10t, 10h5t, 5h11h, 11t13h, 13tT}. Πex-edges are dotted lines, and Γ ex-
edges are plain lines.

The DCJ-distance is immediately readable from the breakpoint graph,
as stated by Theorem 3, that restates the main result of [8] in terms of
the breakpoint graph in place of the adjacency graph4.

Theorem 3. [8] For two genomes Π and Γ , let c(Π,Γ) be the number
of cycles of the breakpoint graph BP (Π,Γ), and p(Π,Γ) be the number
of paths with an even number of edges. The DCJ distance is

d(Π,Γ) = n−
(
c(Π,Γ) +

p(Π,Γ)
2

)
.

The basis for this result is Lemma 4, that is implicit in [8], and states
that any – greedy – DCJ that creates an adjacency that is present in Γ
but not in Π is optimal.

4 The breakpoint graph BP (Π,Γ), introduced for permutations in [16], is the line-
graph of the adjacency graph introduced in [8].

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

Lemma 4. For two genomes Π and Γ , if a DCJ operation on Π results
in a genome Π ′ containing an adjacency that is present in Γ but not in
Π, then d(Π,Γ) = d(Π ′, Γ) + 1.

lir
m

m
-0

03
27

25
8,

 v
er

si
on

 1
 -

8
O

ct
 2

00
8

