Equation against Algorithm: Which differences and which one to choose?
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Abstract

There exists a pregnant debate about possible differences between mathematical and computing approaches. Are equations and algorithms redundant or complementary? After having defined what we call an equation and an algorithm, we will specifically expose the scientific questioning arising from an ecological question, metapopulation extinctions, for which both approaches may be compared. 

We conclude that algorithms and equations are complementary in nature and in practice; they suppose no antinomy and no hierarchy. While using equations implies referring to quite integrated concepts, algorithms more specifically decomposes a complex problem into elementary operations. Although both algorithms and equations relate quantities, they clearly differ as far as an equation does not state any directional pathway, an order for successive operations, from some input to some output. In addition, many underlying assumptions may not be handled in the same way within both approaches, especially regarding stochastic events. 

Finally, practical considerations are primary drivers of using equations or algorithms, and this especially depends on each scientist background and on the current trends of thought in his community. We recommend using both when possible, at least for all questions falling into the category where both formalisms may be explored. 

Introduction

Computing sciences allow developing new powerful tools and compete with formal mathematics to address scientific questions. In such context, (Wolfram 2002) has  claimed the superior efficiency of implementing algorithms within computing systems, for the purpose of scientific demonstration, while mathematicians still highlight the “unreasonable effectiveness” of a mathematical formalism (e.g., (Wigner 1982)). We discuss here what specific differences between mathematical and computing approaches may imply preferring using either equations or algorithms within a scientific framework: are they redundant or complementary? Although algorithms appeared much earlier than computers, the recent success of computer-based methods has leaded to mix algorithms up with computers. Although a computer is a concrete avatar of the abstract machines to which algorithms refer, algorithms can still be designed and performed without a computer as we will suppose in this study. Up to now, very few studies have explored the possible differences and redundancies between algorithms and equations for the same scientific question (but see (Faugeras and Maury 2007; Munoz 2006)). If any difference is to be ascertained, we should address whether one of the approaches is more relevant to address a specific issue. The human dimension is central here, as the choice of one approach is driven by social and cultural norms, even in the context of scientific research (Latour 1987). 

Defining terms and underlying concepts is a first critical issue prior to comparing the approaches. We will subsequently review the different possible uses, complementary or not, of equations and algorithms. As an illustration, we will specifically expose the scientific questioning arising from an ecological problem, for which both approaches may be compared. Yet, we admit the need to address such a debate in human science themes. 

For the sake of comparing equations and algorithms on a sound basis, we exclude here some related, yet out of scope, issues. First, we will not discuss whether any scientific reasoning allows understanding either a “true” reality or a derived, subjective perception, and hence we will assume that equation and algorithm do not differ in term of realism. Second, we will not focus on the elsewhere widely addressed debate between holism and reductionism (Looijen 1998), and instead we will focus on how to solve a given problem, without prejudging its nature. Third, the purpose of this article is not to classify algorithms and equations as qualitative or quantitative models. We consider an algorithm as a qualitative method, as it describes a method to get an output from a given input, as well as a quantitative method, as it can work with numeric values. Conversely, equations are qualitative methods as an overall expression of the relationships between variables; and quantitative methods when they include numeric constants. So we will not enter the qualitative/quantitative debate. Finally, algorithms helping to solve equations are outside the scope of our comparison issue (Buchberger 1976), as they precisely expect building the equivalence between equations and algorithms.

Definitions

Let us consider a scientific question (or problem) attached to a formalized system featuring a part of our real environment. A “formalized” system includes descriptors, mathematical or not, of properties and processes of the system. We wish to address specific issues about these properties and/or processes using an appropriate formalism, which can stem from either mathematics or computing disciplines.
A mathematical formalism here relies on one or more equations depicting logical relationships between quantities, according to a conceptual framework that does not restrict to defining equalities ((Aubin 1997) and references therein), while a computing formalism relies on one or more algorithms that interpret a symbolic character (the output) as a derivation from another symbolic character (the input) (Habib et al. 2001).


Specifically, an algorithm is mathematically defined as a finite composition of elementary functions. The notion of algorithm efficiency is relative to models of computation (or abstract machines), like Turing machine, recursive functions or Lambda calculus. According to the pioneer works of A. Turing and A. Church, all realistic models of computation are equivalent, i.e. they define the same set of functions: the computable functions. (Church 1941; Turing 1936). Algorithms are said recursive, a dominant feature of algorithms, if they invoke themselves repeatedly until a certain condition matches. Furthermore, it is worth noting that working with algorithms suggests successive stages we may prove the existence of an algorithm to address a specific question, we may formalize the algorithm and, finally, we can write the corresponding program for this task. Later stages are not systematically reached, even when formers have been established. 

To such extent, an algorithm states a relationship between some Input (I) and an Output (O) and therefore it can be assimilated to a function F with
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, F being a composition of more elementary functions. Moreover, an algorithm describes, through a succession of instructions, the construction of O. So we may define an algorithm as a couple (F and a description of F), which depicts a functional direction from I to O. Although both algorithms and equations relate quantities (equality, inequality, inclusion…), they clearly differ as far as an equation does not state any directional pathway, an order for successive operations, from some input to some output. 
Context

We may define four kinds of scientific questions according to the way we use equations and algorithms to investigate them (Fig. 1). 

1. First, some questions may be addressed using both equations and algorithms (Fig.1, case 1). For instance, Fibonacci (in 1202) wondered how fast rabbits could reproduce in ideal circumstances and defined the well-known Fibonacci series such as each new number is the sum of the two before it (e.g. 
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). To find the nth value of the Fibonacci series is straightforward with the following algorithm: 
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c. One may also find the nth value of the Fibonacci series (fn) using an analytical approach.  If the two first terms are 0 and 1, the nth value sets: 
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 is the Golden section (also called the golden mean or ratio). 

2. Conversely, the Gödel’s completeness theorem, on which the Turing’s computation theory relies, affirms that there are scientific questions that, though embedded in a coherent mathematical system, can not be addressed using equations or algorithms (case 2). (Gödel 1931) showed that within any given branch of mathematics, there should be propositions which validity can not be proved using the rules and axioms of that mathematical branch itself. One thereby might be able to develop the demonstration by finding outside the system of interest new relevant rules and axioms, but then one create a larger system with its own undecidable (or unprovable) statements. This implies that every logical system of any complexity is, by definition, incomplete and includes more true statements than one can possibly prove according to the related set of rules. 

3. (Turing 1936) proved that a general algorithm to solve the halting problem for every possible program-input pair can not exist, i.e., there is no algorithm that can correctly determine, considering a program P and an input I, whether P eventually halts when run with that input. We say that the halting problem is undecidable over Turing machines (such as our computers). Consequently, these are cases (Fig. 1, case 2) where both equations and algorithms would be inefficient. 

Furthermore, an algorithm might be inefficient to solve a problem for which equation might be efficient (case 3), or reciprocally (case 4). Because an algorithm relies on a finite set of elementary operations, we may include in this third category any problem requiring an infinite number of operations. For instance, let request the value of the limit L of any geometrical series defined by: 
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. While it would require an infinite computing time to reach the effective limit value, the simple equation 
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 provides the exact solution in case of a converging series (i.e. if
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4. The symmetric case (equation inefficient) is illustrated by the recent proof of the Kepler’s conjecture (or other four colour theorems), using an algorithm-based approach, as using equations failed during four centuries (case 4). In 1611, Kepler hypothesized that a close packing (i.e. either cubic or hexagonal packing in a closed volume, both of which have maximum densities of 
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%) is the densest possible sphere packing. This assertion is known as the Kepler conjecture. Hales (1997) proposed a detailed plan describing how the Kepler conjecture might be proved using a radically different approach from earlier attempts, extensively using computer calculations. Hales subsequently provided a full proof (Hales 2001) extensively relying on methods from the theory of global optimization, linear programming and interval arithmetic. The Hales' proof has been difficult to validate (Szpiro 2003). To such extent, proving the Kepler’s conjecture illustrates how algorithms may be more helpful than equations (Fig. 1, case 4).  
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Figure 1: Relationships between scientific questions and solving formalisms define four classes of questions, named cases 1, 2, 3 or 4.

This basic outline helps understanding how the debate on using either equations or algorithms may have merged. They should only compete in the context of case 1, that is, when both approaches can actually be used. If a question is still unanswered or if one finds a new equation or algorithm to address it, shifts are possible from one case to another. Specifically, a question may shift from case 2 to cases 1, 3 or 4, and from cases 3 and 4 to case 1, according to some scientific progress. We assume that many scientific questions currently addressed in life sciences today belong to case 1, even if they are at present classified in cases 3 or 4. We hope that our study will make scientists sensible to both algorithms and equations and help the shift of scientific question into case 1.

Illustration

In ecology, the metapopulation theory aims at investigating the behaviour of a network of populations undergoing colonization and extinction events. The premise of the theory is that every population is doomed to extinction, even though the organism is well adapted to local physical and competition constraints within a patch, because of a random variation in the number of individuals (game theory). Many sources of random variation are thinkable: fertility, climate, predator density… Anyway, population extinction is an absorbing state, that is, a population with 0 individual can not regain individuals without an external input. But if colonizers come from nearby populations, the extinction events destroying populations can be counter-balanced by colonizing events creating populations.

Hence a network of populations, also called metapopulation, may persist far longer than any single isolated population, and that is why the metapopulation theory has raised such a large interest in ecology (Hanski 1998; Hanski and Gilpin 1997). There are two main related issues. First, what amount of available suitable space, or habitat, a species is able to occupy at a given time? Second, what connectivity between suitable patches is necessary to allow the species to survive as a metapopulation? This points to the ability of a species to spread and persist in the face of a spatially fragmented suitable habitat.

Equation-based foundations of the theory
The theory first developed into simplified equations trying to grasp important features of a metapopulation. The most famous mean-field equation of (Levins 1969) accounts for the equilibrium density of populations in a suitable habitat, without any spatial structuring. This was later on improved to include the effect of habitat scarcity, using a constant probability in space (Lande 1987). But recent researches have highlighted how critical is the topology of suitable patches, as isolated parts of the habitat may be hardly, if not, colonized, and the equilibrium distribution of populations can be very heterogeneous in space and time (Fig. 2). 

This mainly pertains to the non-linear nature of the dynamics and to phase transition behaviours. This means that a gentle variation in a parameter can induce a large change in the overall system. Specifically, a small change in habitat structure can induce a large-scale extinction of the metapopulation, a phenomenon of big concern for ecologists (Bascompte 2003; Ovaskainen et al. 2002; With and King 1999). When the system is close to such threshold, there is large-scale spatial and temporal structuring, that is, one needs to follow the metapopulation over a very long time and/or over a very large area to grasp the true stationary features. The classical deterministic or stochastic equation-based modelling is not designed to take into account such structuring and hence may fail to correctly predict the fate of a real-world metapopulation (Solé et al. 1999). 

Specifically, a very simple mean-field equation can well predict the stationary density of populations if calculated over a long enough time. But the long enough time can be far too long to meet other assumptions of the model. It is indeed much unrealistic to assume the habitat to be spatially and temporally static over thousands of years. The problem is then to deal with ecological data of short duration. The failure of classical deterministic and stochastic equation-based modelling to fix the issue here points to the need to reconcile mathematical powerful properties of equation-based approaches with practical constraints.
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Figure 2: Famous example of the metapopulation system of the Glanville fritillary butterfly in the Aland islands (Finland). Small open circles feature the known suitable but unoccupied meadows (habitat), while black circles and large symbols are the meadows in which Glanville fritillary larvae were present in autumn 1995. Of the 42 local populations sampled, the 35 that survived to autumn 1996 (green circles) are distinguished from the seven that went extinct (red triangles). From (Saccheri et al. 1998).

Algorithms improving the understanding
In order to explicitly investigate the spatial and temporal structuring within a real-world metapopulation, a solution is to devise a simulation algorithm of population extinction and colonization events in a heterogeneous matrix of habitat. One can simulate many times metapopulation dynamics in varying habitat landscapes, with replicates and varying colonization and extinction dynamics, and analyze the overall behaviour using, for instance, spatial statistics. This is an experimental system (Peck 2004) that allows grasping significant effects in parameter variation. Simulation algorithms thus provide a way to characterize spatial and temporal structures (Bascompte and Sole 1996), and thereby allow generating empirical laws and equations that one can use to improve classical equation-based approaches (Bascompte 2001). To such extent, equations and algorithms are complementary tools to understand metapopulation dynamics (Faugeras and Maury 2007). 
(Munoz, Cheptou, and Kjellberg 2007) proceeded this way to investigate the spatial structure of an equilibrium metapopulation according to a varying density and aggregation of suitable habitat on one hand, and a varying relative colonizing ability on the other hand. A simulation algorithm was used repeatedly with varying parameters and replicates to grasp robust patterns from spatial analysis. This allowed the authors to show that, as they hypothesized, one can separate the signature of the habitat structure and of the inner population dynamics from the analysis of population distributions.

Although the simulation algorithm here allows displaying rich behaviours, the approach is still really contingent upon the simulation design. How general are the conclusions from such an approach? Any scientist needs to refer to some synthetic theoretical pathway to understand the full importance of underlying processes. To such extent, (Munoz 2006) proposed to transpose conceptual ideas on non-linear systems from physics to ecology and designed a framework relying on both simulations and equations to reach a comprehensive view on how underlying processes relate to emerging spatial structures. 

Finally, the metapopulation theory is founded on a simple conceptual scheme according to which chance extinction is less likely in a network of populations than in single isolated populations. The equation-based approach, as presented, e.g., in (Hanski and Gilpin 1997) simply render the idea in a mathematical way and benefit from robust properties and theorems. They indeed proved to be very useful and successful (Hanski 1997, 1998), but still inefficient to grasp some specific features related to non-linear processes. In order to understand how the local processes relate to emergent structures, simulation algorithms have proved to be of great help, as theoretical experiments, to formulate new important and synthetic ideas. To such extent, the interplay of equation- and algorithm-based approaches depicts the step-by-step trajectory of a growing theory that oscillates between exploration and formalization of real-world phenomena.

Discussion
As illustrated in the context of the metapopulation theory, equations and algorithms might be fully complementary. Yet, we should be very careful about any spurious discrepancy of equations and algorithms, as algorithms rely on a function defined by an equation related the input and the output (cf. definitions section). We suggest that the main difference between equations and algorithms pertains more to the way we use these formalisms rather than on the formalism nature. Any researcher refers to his own integrated point of view about what information an equation should convey, because it handles quite “high” concepts such as a force, a mass or a spatial geometry which are close in nature to the human abstraction ability. (Poincaré 1902) pointed to the intuition of such concepts being acquired by our own sensorial experience. At the counterpart, a machine would probably need much more information to handle the same concepts. This partly explains why we develop functions through algorithms to benefit from the iterative and recursive (i.e. of increasing complexity) functioning of our machines. 
Yet, this difference is probably not so sharp and not systematic. First, human may sometimes borrow iterative way-of-thinking when intuition is missing: this occurs for example in complicated geometrical demonstration or with any question requiring many parameters and non-linear relationships, as already discussed by Levins and others (Weisberg 2006). This implies decomposing every question in a succession of more elementary operations, which are subsequently combined and aggregated. Secondly, computers sometimes mimic human brains when working with neural networks to solve a scientific question: we call them black-boxes that offer new and richer information in output. This may partly be this black-box capacity of our brain that helps us working with integrated equations rather than on recursive assemblages of numerous elementary functions. Brains and machines imposing different algorithm conceptions have functioning different enough to impose well separated ways of formalisation to solve a common scientific question. 

From a practical point of view, these arguments do not help choosing between the two formalisms to address a specific the question. It is therefore interesting to identify a list of specificities and/or advantages of these formalisms in case of scientific questions falling into the case 1 depicted in figure 1: 

1. We would certainly prefer the simplest formalism when both equation and algorithm are possible to address a question, in terms of conceptual simplicity. For instance, cellular automata and their parsimonious neighbouring rules may be preferred as the complicated equations describing the same phenomenon. 

2. The computation time, in particular if real-time treatments are needed, may also be a criterion to choose one of the formalisms. This point may also have deep implications on accuracies and uncertainties of the solutions of practical applications. 
3. The way stochasticity is taken into account differs in both formalisms, as illustrated in the metapopulation example. This is probably a most critical and significant discrepancy. Equations are referring to deterministic features of probability distributions (i.e. mean, standard deviations, etc), while algorithms are able to feature actual realizations of the corresponding random processes. To such extent, the resulting stationary features we grasp may critically differ from one approach to the other. 

4. The “social context” at time of the question is solved also plays a crucial role in the formalism choice (Latour 1987; Morin 1982). The social context refers to the scientific community context, as well as the past experience of the researcher. This scientist will easier develop formalism linked to its past experience. More unconsciously maybe, the society we are facing may have a strong impact on the way we are solving scientific questions. 
Finally, by using the figure 1 to define the context of our discussion, we are not saying that equations and algorithms are the only approaches able to solve scientific questions. Computing machines based on analog signals, in particular, were commonly used for similar a purpose half century ago until the digital computer supremacy (Dewdney 1985). Such analog computers are based on some time varying parameters of electrical, mechanical, pneumatic, or hydraulic contexts. This observation would suggest adding a new ellipse into figure 1 defining four new zones, yet being outside the scope of our debate. 

Conclusion

Equation- and algorithm-based approaches seem to deeply differ in their inner philosophy. While using equations implies referring to quite integrated concepts, algorithms more specifically decomposes a complex problem into elementary operations. Although both algorithms and equations relate quantities, they clearly differ as far as an equation does not state any directional pathway, an order for successive operations, from some input to some output. In addition, many underlying assumptions may not be handled in the same way within both approaches, especially regarding stochastic events. Algorithms and equations are complementary in nature and in practice; they suppose no antinomy and no hierarchy. This suggests that the approaches are different enough to prevent concluding on one being better than the other, and suggest using one or the other according to specific needs. 

Finally, practical considerations are primary drivers of using equations or algorithms, and this especially depends on each scientist background and on the current trends of thought in his community. We recommend using both when possible, as it is so rarely done, at least for all questions falling into the category where both formalisms may be explored. 
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